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A Model of Object-Identities and Values

Toshivuki Matsushina. Gio Wiederhold

February 23, 1990

Abstract

In this report, a formalization of the object-oriented data model is proposed, which inte-
grates value-oriented models and object-oriented models by providing a simple semantics of
object-identity.

The formalism reveals that the semantics of the object-oriented model consists of two
portions. One is expressed by an algebraic construct, which has essentially a value-oriented se-
mantics. The other is expressed by object-identities, which characterize the essential difference
of the object-oriented model from value-oriented models, such as the relational model and the
logical database model. The value-oriented portion represents the abstraction of the real world
objects, while the object-oriented portion represents the existence of the real world objects.
These two portions are integrated by a simple commutative diagram of modeling functions.

The formalism includes the expression of integrity constraints in its construct of classes.
which provides the natural integration of the logical database model and the object-oriented
database model. More specifically, we will show that a datalog program can be expressed as a
collection of classes in our model.

As an application of the formalism, formal guidelines on database design are also discussed.
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1 Introduction
In recent years, many attempts have been made to formalize the semantics of the object-
oriented model. As the result of these efforts, several models have been proposed [AN 89],
[LR 89], [1KW 89],[CW 89]. Roughly speaking. these models are logical database models with
typed variables. Their approach is to incorporate a structured knowledge representation, such
as complex objects, object-hierarchy, into a logical representation paradigm. However. the
semantics of object-identity is not captured in these models. Although [AK 89] formalize
object-identity in their model, the semantics remains complicated. Basically, what they have
done is to "push" object-identity into a value-oriented framework consisting of logic and types.
However, as discussed later, the notion of object-identity is something that will never fit into
the value-oriented paradigm.

In this report. a formal semantics of an object-oriented model is proposed, which approaches
the issue from the opposite direction. \\'e try to incorporate a logical knowledge representation
into a structured knowledge representation paradigm. We will show that our approach pro-
vides a natural formalization of object- identity and a simple integration of the object-oriented
paradigm and the value-oriented paradigm.

This report has two main objectives. One is to provide simple and elegant semantics of
object-identity, which integrates value-oriented models and object-oriented models. The other
is to extend the formalization of objects so that the integrity constraints are included.

1.1 Formalization of Object-identity
In this section, we first provide an overview of the origin and the role of object-identity in
knowledge representation, using the discussions in the literature listed above. Then, we provide
an outline of our formalization of object-identity.

The semantics of object-identity is obtained by considering a basic aspect of a knowledge
representation. Namely, any knowledge representation is only an approximation of the real
world knowledge. The existence of objects in the real world cannot be captured by the values
of expressions. We consider an example. Let us assume that a concept 'person' is expressed
by name and address according to the following schema in the sense of [AN 89]1.

Location = [city:String, street:Strtng, nizimber:Integer],

Person = [narne:[f ir.st:.S'trinq, last:St ring], address:Locat ion].

In most cases, we can completely identify each individual person by providing the name and
address. However, there is a possibility that two distinct persons with the same name are
living at the same place. The occurrence of these persons cannot be characterized by the
values of attributes 'name' and 'address'. We can come up with two relevant solutions for
this problem. One is to provide more attributes for expressing the concept 'person'. However,
the real attributes of a person are almost infinite in number. So. even if we introduce many
attributes for 'person', we cannot eliminate the possibility that some distinct persons are
expressed by the same set of attribute values. The other solution is to provide a key attribute
to express the uniqueness of each individual person. lowever, this does not provide a natural
way of expressing the real world, because it is an artificial attribute. We cannot avoid the
imiteessary seiantics of the key attilbute. Vor vxaniplh. a ',ocial-sectrity-nui mber' may be

'We use the notation explained in [A1K 89] for the nioiiwnt



implemented as either an integer or a string consisting of digit characters. In order to (hdine
the equality of objects, we have to define it as equality of integer, or equality of string according
to the "implementation." Further, we have to express the maintenance of the key attribute

explicitly in the higher level semantics. For example, --Once an instance is created. the key
attribute should not be altered", "there should not be more than one instance whose kev
attributes are idntical.'" Since the semantics of "real existence of objects " is just that of a et
with the equality relation, it is not desirable that the semantics of the implementat ion aplplers
in higher level semantics.

The problem is essentially due to the inherent incompleteness of our representation. There-
fore, rather than expressing the uniqueness of an occurrence in the real world by attribuite val-
ues, we need somet king that specifies the existence of occurrence. The object-ideniy seIves
this role. It is important that ali object-identity is not a value. Instead, it is an fntry yint
for information access in our knowledge. In other werds, it is the reference to knowledgehase.
Hence, as disclissed in [Ll? 89]. it, provides the basis for object sharing, which is tile im,,nt
important advantage of introducing object-identities in a practical system.

Let us come back to the previous example. Suppose that a person named 'John Ford"
lives at "2260 Yale Street Palo Alto". Moreover, suppose that a person named "Mary Carter"
lives with him. 'VLh",,e facts are expressed by:

.P001' = [nane :[first:"John", Iast:"Ford"], address:'LO 10'.

/1'002' = [n ame:[first:" Mary", Iast:"Carter"], address:' LO 10'],

'L010' = [cityq:"PaloAlto", street:"Yale", number:2260].

What happens if the name of the street where John lives is changed from "Yale" to "llarvard"?
Since John lives at the location 'LO10', the expression of the location becomes:

'L010' = [city:" PaloAlto", street:"Harvard", number:2260].

Hence, after the change, we can say that both Joi and Mary are living on iHarvar:d Street.
The point is that 'L010' corresponds to the existing location on earth, and .John and Mlarv's
address is expressed by ,'efe,'ring to 'L010'. Thus, when its street name has been changed. lie
change is propagated properly.

So far, we have seen the origin of object-identity and the role of object-identitY in t lie
knowledge representation. To summarize:

e The object-identity corresponds to the real existence of objects in the real world. which
cannot be captured by the the value of expression.

e The object-identity provides the basis of object-sharing. An object-identity is the refer-
ence to represented knowledge. which is exactly what is to be shared.

Next we claiti that in order to take full advantage of object-sharing, attribute values of an
object should be object-identities.

[A K 891. [CW 891 allow coniplex valueb" a, the values of attributes. It provides us t lie
complicated expression of objects. N amelv, in the above example, [fir.st:" loh t",la.t:" Ioird"}
is a con) plex(st rctured) value. However, this approach has a disadvantalge. If %, llo

complex valties. there is aii inherent possibility that the stibexpression of a comphlex vaie

"We ise the te'rili icompehx value"" instead of -coiplex object" l e i ont carry ohject-itit i
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would be changed. Since a substructure of a value cannot be shared. it will cause costly
update maintenance. Of course, the schema is designed so that the attribute value of 'name'
is really a value and not sharable, because it is quite natural to express a person's name as a
value. However, even in this case, we can show an example that demonstrates the necessity of
sharing objects.

Let us consider an additional concept. 'BusinessCard'.

Bti.sies.sCard = [compa y:String, title:String. name:[first:String, last:String]]

Assume that John's business card is expressed by:

'BO 11' = [company:"CD13", title:"salcsra(I", nam:[first:"John". last:"Ford"]

What happens if John marries Mary and changes his last name to "Carter"? We have to create
a new value:

[f irst:" Joh ", la.,t:"Carte r"]

and replace
[ fir st:".J oh n", l (I.t:" Ford"].

The creation of the new value will be costly when the structure is large. Furthermore, we have
to replace -name' of both 'POOl' and 'B011'.

If there is no need for the object-sharing, the complex value would be reasonable. Ilowever,
if we have imore than one concept that shares a same value, as in above example, we should
incorporate with object-sharing. Thus, in this case, the following schema will be preferable.

Name = [first:String, last:S'tring],

Person = [name:Name. address:Location],

BusinessCard = [company:Striig, title:String, name:Name).

The point is that every attribute should refer to an object with object-identity. Therefore.
it is not desirable to design such a schema as the original -Person' with complex-value [first:
String, la.t:String] as attribute value. The schema must be changed dramatically when we
add a new schema, object like 'BusinessCard'.

In order to dcmunstrate the idea more clearly, we repeat the discussion with the following
schema. In this case, the attribute is not a complex value, but just a value.

Person = [name:S trin1ycmployer:Strin7g]

BusinessCard = [company:String. naine:String].

The information about John will be expressed by:

'Pool' = [name:".]ohnFord", ciuployer:"C'DB"]

B01 1' = [corn pan y:"C' D B", t tle:" , s(ic.Si(il7". n:me:".Johu Ford"]

If he changes his company from "('DB" to "HAL". we have to change the employer of '001'
;d11(I the companv of '13()1'. 'I'hmrefore. rather than having valine-attribute, we should have
only attribit e referring the ohjct-i(Ionit v of other objects. Namely.

"P)0 l 0 1 11a ii :'X .V 12'. f i p/loq L'000))O]



'BO11' = [coiuprty!j:'EOOO'. titlc:'S111', name:'.V 0121 .

'N012' can be associated with a string value "CDB" or "HAL."
To summarize, in order to make use of object-sharing fully, it is preferable that a schema

object doesn't have 'value' as an attribute value3 . Instead, attribute value should be an object-
identity referring to another object instance. In particular. it is not desirable to have complex
values as attribute values.

Moreover, since the attribute names, such as *ame';employer'. can be regarded as access
functions, we get the following flat representation.

name('POO1') = "X012', cmployer('POO1') = 'E000',

company('BO11') ='EOOO', title('BOI1') = 'Sill', name('BO11') ='POOI'.

Thus the information about John is expressed by the partial functions from object-identities to
object-identities. We call this representation space objtct-identity space, which will be precisely
formalized in Section 4.2. The semantics of this representation is quite simple.

However, the above representation does not have an important feature of object-oriented
representation. That is the explicit stiucinral ,-l,,esentation of knowledge. One of the big
advantages of frame or complex object in knowledge representation is that they provide the
structure of knowledge that we can easily imagine and manage. Of course, we can express the
semantics of complex-object in first order logic by some transformation [CW 89]. However, if
we express it in first order sentences or formulas, the structure is concealed in the semantics of
sentences. Hence we have to interpret the first order sentences to get the structure. Therefore.
we should integrate the object-identity space with a structured complex-value representation.
In Chapter 4, we have a simple and elegant formalization that integrates them. The outline
of the integration is as follows. First, we provide t lie syntactical construct of schema objects.
Next, we provide the value-oriented model, i.e. an algebraic model with (complex) values.
Then we provide the model expressed by the object-identity space. Finally, we provide the
mapping that combines object-identity space and algebraic representation of complex-values.
The compatibility of object-identity space representation and algebraic representation is ex-
pressed by a simple commutative diagram.

1.2 Integrity Constraints

In the conventional approach as [AIK S9], [KW 89]. schema objects are defined with the struc-
ture expressed by types. Then logical formulas are constructed on top of the objects (Rules in
[AK 89], 0-formulas in [KW 891).

In our model, each schema object, called C-class, consists of type and a restriction pred-
iate. The type expresses the structure of knowledge representation, which will be referred
to as a complex object, a hierarchy of objects in conventional object-oriented models. The
restriction predicate will express the integrity constraint of the representation. Let us considerahsolute temperature" as a simple example. It can he expressed by the positive real numbers.

The structure will be realized by the algebra R with operations +, -, * etc. The integriltY
constraints will be expressed h v the pr,dicate ( .r) -(.r > 0) expressing "positive ess.'"

IY iicluiding the integrity constrainits as the hasic coinponent of each object, we can sio

thal evirv mill of knowledge call be expressed by objects. Even a loi¢cal forinla call be

"l he, w,,rin "rtribi ie value" is 11o. a ice ul rninology .lak be ii should be '., d attrbtu te"



expressed by an object. In the conventional approach. a logical formula(ground fact) is a value
in the sense that if every substructure of two logical formulas are the same, then tho.e lojical
formulas are the same. However, as discussed in Chapter 5, even a logical formula cannot
be treated as a value, due to the inherent incompleteness of our knowledge repreentatio1.

Rather, it should be expressed by an object that carries a unique ob]ect-idcntitl.
If te Fxpres. knowledge by objects, we can provide a representatin of thc r(olworId th(It i'

closer to our intuitioii than expressing knowledgE by logical formul,., oli complfx obP t.. We
will discuss this matter in detail in Chapter 5.

1.3 Outline
The outline of this report is as follows.

In Chapter 2. we introduce a notion of data algebra that is an abstraction of (lata. lRorily
speaking, the data algebra is the combination of type and integrity constraints. The tYpe 1";Irt
is expressed by a universal algebra, and the integrity constraints part is expressed by ,i boolean
function, The data algebra provides the basis for the semantics of value-oriented da a [imodel,
which is discussed in Chapter 4.

In Chapter 3, we introduce a notion of C-class that formalizes schema objects. A ('-class is
a construct that expresses a unit of real world knowledge. As mentioned earlier, in conventional
models such as [AK 89], [I\W 89], those units of knowledge are expressed by complhx objects
and logical formulas. The C-class is similar to class in the usual object-oriented lauguages,
such as Smalltalk, and CLOS [WT 89]. A C-class is a combination of syntactical expiressiols
of type and restriction predicate, the type specifies the structure and the restriction pr1edicate
expresses integrity constraints. A restriction predicate is a first order formula. with iniplicitly
typed variables, which is essentially a restricted form of 0-formula [IKW 89]. We also introduce
a hierarchy among C-classes to express the hierarchy of knowledge.

In Chapter 1, we discuss the main theme of this report, object-identity. First we formalize
a value-oriented model of C-classes. Then we define a object-oriented model of C-,lass s bv
introducing the object-identity space. This object-oriented model represents the cleai semantic
distinction of a vallue-oriented model and an object-oriented model. Furt her it clarifies the role
of object-identity in the knowledge representation.

In Chapter 5, we consider the C-classes in detail and provide some kinds of C-classes. It
reveals that even a logical representation of knowledge cannot be captured in a value-oriented
paradigm. We discuss which knowledge should be value and which should be object as the
database design issue. We introduce the concept model as a knowledgebase uiodel.

In Chapter 6, we demonstrate the expressibility of the concept model, by simulaing lhe

semantics of other models, such as datalog, IQL[AK 891.
In Appendices, we briefly discuss database operations, inheritance and overloading. The

semantics of database operation is quite simple, especially for queries. Furthermore, we provide
the copy of the actual session performed on the prototype system that has been imploni ted.

2 Data Algebras

We introduce a. notion of data a/bra to express iistai(es of schin a objects. Th lnoltion of
data algebca i, An albstract formalization of complex ol)]ects with integrity coust rait ,>. which
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will serve as a value-oriented model of schema objects later. We assume a basic knowledge of
the universal algebra, as found in p.22 - p.60 in [BS 81].

2.1 Multi-valued Universal Algebra

II order to define the notion of data algebra. we provide a precise definition of mvlli-C lued

j'tnction, portial function, and an extended universal algeb-a. If the reader does niot like
mathematical details, he/she may read only the last paragraph of this section.

Let A and B be sets, and let 2A and 2 B be the power sets of .4 and B respectively, Then,
a function from 2A to 2 B is called a multi-valued function4 from A to 1. if it satisfies the

following condition.

VU E 2A, f(U) U f({r}).
XEU

We denote the multi-valued function as:

f::.4 B.

It is easily proven that the composition of multi-valued functions is also a multi-valued
function. Nainely,

f:: A - B, g::B - C = gof::A - C'.

A multi-valued function f is called total if

f::A - B, Vx E A, f({x}) X.

Note that we can construct a category consisting of sets as objects and multi-valued functions
as morphisms. The identity multi-valued function ida on a set A is the identity function on
2A.

For a multi-valued function f from A to B, we can always define the quisi-inverse function
f-I from B to A.

VVE2B, f-(V) df {XE A1(f(x)n V)50.

A multi-valued function f from A to B is called injective if f-1 of equals id. The function f
is callkd .uijective, if fof- 1 equals idB.

A par-tzalfunction f from A to B is a multi-valued function from A to B such that for each
element of A, the cardinality of its image is no more than one,

Vx E A, caid(f({x})) ! 1.

The domain 0(f) of a partial function f is:

(f)= {xE AIf({x)#00}.

Any function h from A to B can be regarded as a multi-valued function. Namely, vwe can
define a itilti-valued function i/ by:

v: UC 2A. 1(U) = {f(.,I .) I X }E

''A umulti-valued fmiction from A to B is cqmivalent to a hmu;tr relation (, A :t 1 1
'The oporator can he considered as a finctor from thoe Ca ,, g i, of sets t,, another category ('o msoo rg of -,t- i-

o.Wcts and multi valued hurtions a.s rorphiasis



In the rest of this report, we use the following simplified notation so long as it causos n1o
confusion. For a multi-valued function friom A to B, for an element x of A, and y of B,

de'f ,.effPX) M10{z), (f(.r) = y)- (f({W)= (y).

Moreover, we introduce a virtual element v'L to express "undefinedness", which is called the

null v'alue. The null value 'i is a common element of all sets. For a multi-valued tartil)
function f, we denote

f(.r) = V

if

f({,}) 0.

Now we extend the notion of universal algebra. A multi-valued universal algebra A is
a pair of a set .4 and a family {ff},i' of multi-valued functions. All the notions, such as
homomorphism. isomorphism, are redefined using multi-valued functions instead of funci iols.

Similariy, a partial-valtcd toonversal algibra is a multi-valued universal algebra such that all
the functions are partial.

The notion of data algebra is defined by multi-valued universal algebras. However, in order
to make tie discussion simple. we only consider partial-valued universal algebras in the lest
of this report. The reader can consider the partial-valued universal algebra as usual universal

algebra, except for the existence of null value. Hence, we use the term "universal algebra"
instead of "partial-valued universal algebra" from now on. But readers should remember that

functions are partial.

2.2 Definition of Data Algebra

In this section. we provide the definition of the data algebras. A data algebra 6 is a pair of a
universal algebra 6 A and a rcstriction function 7. Namely,

6 =(A,r), A= (A,{f,},Gj), r : A -2,

where 2 is the two-element boolean algebra.

2 = ({0,1}, A. V, -,).

Further, we assume that each data algebra contains a special element null ralue v1 . As
mentioned before, the null value expresses "undefinedness." For each function, if one of the
arguments is null value then its value is also null value.

A data algebra is the abstraction of a collection of data with operations on it. For exanlplo.
"positive numbers" would be expressed by a data algebra:

dJf I 1 .r > 0)( R , r ), ( . x, =) )L 0 (.r _K 0),

where R is the universal algebra of real numbers.

;We should remember that this i versal algebra is a partial-valued tin versal algebra d(tfined il i th, Ipr,v i(,-
section. We can regard it. as if it was a usual universal algebra b introducing a uill-value v a., a conmon alti, .-I
all universal algebra.

7More precisely. r is a ftinction on the donan of A. Ilowev'r. we describe it. as a ft uiction on A l)im llmk

throughout this rc.lort. we treat A and its domain i)terchaig;iby Ion, n. It,, meanin is leir hr evi[i'l

give universal algebra.' A. 13 % %e would state somirething Ilk, il mapliig from A I ) 3. "le t n':ting 1- A11 " . '

froin a donal of A to the domain of B."



2.3 Fundamental Operators

We introduce operations among data alebras. These operations will provide the ;nterpreta-
tions of fundamental operations on C-classes. which wil be introduced in Chapter 3. Each
operation happens to have a corresponding construct in relational algebra or SQL. However,
we should note Ithat these opera tors have not been obtained by a luere extension of relationdl
alebra. b ut by the consideration of knowledge representation, as their ,t alne, sugest. We
cot.ld say that one of the reasons of the success of relational model is due to lie fact that
lie relationtal operatiots have a correspe.idence to a higher level of mentdI proc,,ses. such as

abstractiou of concepts. This will be clear when we introduce the fundatienuil operators on
('-classes in ('hapter 3.

2.3.1 Aggregation

The agrgre(iation operator constructs a complex structure out of data algebras. It is similar to
cartesian product operator in relational algebra.

Let 4) be a set of sYmbols. and let o be a tiapping from 4) to a set of data ,lgebrals.

o(f) - = (Aprj) (f E ().

Then the (lqgco]Ution of {6 fE is

(flAf, A(riop,))

where p, is the projection from -,J A, to Ai, and o designates a composition of mappings.
We denote the aggregation by

1-(4, a)or 1-[f.

In particular, if 4) is equal to {1,.... n}, we denote it

Moreover. if b, is equal to a data algebra 6 for each i (1 i < n), we denote instead of
J1=t ,. Furthermore, if we write the aggregated data algebras as:

6" x 6, 6" x 6 x 6',

for given data algebras 6, ', 6". etc, it means that we are assuming the following implicit
s.,qil ci ci flg,

o( ) 6", a(2) = 6. (3) '.....

2.3.2 Recursive Aggregation

In ord,,r lo provi 'e an algebraic niodel for recursive t ypes, we litroduce /y.' I"., t gregl€.latioll.
Let G b at directed "a'apI with nodes V and labeeikd edges '.,

G=(i'. 1).
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We denote a II element of E by (n, m,. I).vI whch IIIeans thI at h ere( Is a ii edge from ii to in l abeled
byv 1. Further. let a be a mapping from U to it set of data alg-ebras, where U is the subset of

Isticli that each element n of U doesiift have anY edge t Iiat comes into it,

u El V ~(i31 v, n,1) E EF}.

o(n) =(B,. s, ) ii E V)

Then, the recurisive aggregation with respect to 6( and o 'Is dlefinied as follows.

HG, o (IIIEt, A,~ An E I,(r,~ o

C V A_~~ { l(n,m.1)EE A(mI,) (72 e U)
V(ri 1) EE A,,, Am

{0 (otherwie)

The functions t, are multi-valued functions from A., to 2. which is defined as follows.

t t f A(n,ml)0EE(S,rn~(m,l)) (n ' U)
syl (othierwise)

where sm(x) = '1 (x = vj )
'~t,(x) (otherwise)

Note that the elemer.ts of A,(n U) have an infinite structure in general. We may regard
those elements as infinite trces. However, since we allow tiull value v_1 as the common element
of every algebra, we can expre~b elements with a finitely recursive structv -e. The function t,
is well-defined. if the recursive definitioiL assigns consistent values to each subtrees. Althoughi
the restriction function r is a partial function. it is well-defined on the elements with finite
structure andI cvclic structure. The aggregation defined above is a special case of the recursive
aiggregation. In fact, if we assume:

V = _P ~ jfE')

we get the original aggregation operator.

2.3.3 Abstraction

The a bstraction operator constructs a niew (data algebra, 1inorinig some of the substructures of
aI data algebra. It is imilar to the project ion operator III relational algebra.

For f (D. let A1 be a universal algebra. where (P Is a set of s iols. and let T1 be ai sub.et
of (P. IEvt is consider the following dlata algebra

(II A j.r



where [Ife Af is the product algebra of {Ai}fEP. Further, let P, be the projection from

J1f E Af to HEq, Ag. The abstraction T(( . %P) of the data algebra 6 with respect to 'P is
defined as:

T(, ,P) = [ A., r-),

where

1)(if 3 E ItP- x).r(y) 1)ri(x) 0 (otherwise)

2.3.4 Restriction

The restriction operator imposes a new restriction on a data algebra. It is similar to the
selection operator in relational algebra.

Let 6 = (A,r) be a data algebra, and let s be a mapping from the domain of A to 2.
Then the restriction with respect to s is

(ArA s)

The restriction is denoted by 0(0 s).

2.3.5 Sequence Construction

The sequence construction operator constructs a data algebra consisting of sequences of ele-
ments of a data algebra.

Let 6 = (A,r) be a data algebra. The sequence algebra Seq(6) derived from 6 consists
of the direct sum s of the product algebra AT (i = 0, 1,2 .... ), and the relevant restriction
function rseq,

Seq(6) -- Atn rn'-n=0 , rseq)

VX = (x 1 ,X2.. . ,..,) E Seq(6),(n = 0,1,2....)
f r(x,) (n>0)rseq(x) A

1 (n= 0)

Given a class of universal algebras. The set of finite sequences of elements of the algebras
in the class forms a universal algebra with functions, length, concatenate, null, reverse. eLc.

We designate it by SEQ. We assume that the direct sum E" 0 A' is a subalgebra of SEQ by
embedding it in SEQ.

2.3.6 Bag Construction

The bag construction operator constructs a data algebra. consisting of bags of elements of a
data al-ebra.

Let = (A, r) be a data algebra. We cai define a congruence relation -in the direct sum
algebra ,-A" ias follow.. For elements i.gof Seq(6),

(. . x,,, = (Y .YI).

"The direct stim is always a partial-va ied algebra.
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the sequences i and are equivalent with respect to ,: Z , I f n equals In. and there exist

a permutation a of order n such that

(X1,...,z,,) = . 1 ..... 1 Xo(,) .

Then the bq algcbr' derived from 6 consists of the quotient algebra ofE" )A" with respect
to - and the restriction function rbag . Since the restriction function r,,q of Seq( S) hia, tl,,

saine value on the eq ii valence class of ,,', we can define the rest riction funct ion r/,,,, of Bag( ,)

bv:
rbag([x) = r,,q(i),

where [f] is the e(luivalence class with respect to - containing F. Similarly. we can (oust rlict
a universal algebra BAG as a quotient algebra of SEQ. As in the definition of Seq(s). we
assume that the algebraic part of Bag(6) is a subalgebra of BAG by embedding it in BAG.

2.3.7 Set Construction

The set construction operator constructs the data algebra consisting of finite sets of elements
of a data algebra.

Let 6 be (A, r). The set algebra Set(6) is the collection of finite element-, of A that satisfies
r. The definition is as follows. First, we define a restriction function s on Bag(,). We denote
an element of Bag(6) by [.F], where i is an element in Seq(b). Then.

I(, X2,.. ,)

(f d(1 1 (if(i1j X Xz#x)
{ 0 (otherwise)

Next, let SET be the universal algebra of finite sets with functions U(union), n(intersection).
-(difference), etc. Then set algebra of Set(6) is obtained from O(Bag(6),s) by regarding its
algebraic component as subalgebra of SET. Namely,

O(Bag(b),s) = (E', A'/-. rb9 A s).

2.3.8 Categorization

The categorization operator constructs a new data algebra by categorizing elements of a data
algebra with respect to the values of some substructures. It is siniilar to the grouping constrict

of SQL without aggregation functions.
Let (D be a set of symbols, let 'I be a subset of (D and, let k1c be the complement of 1P,

41C 4, kP C = 4D - kP.

Fiurther let. 3 be a tiapping from 4D to a set of universal algebra. Now let us consider the

following Ia ta algebra 6,

= (I h , f), r),

Thl the' inhqrsf/wnttt [ (6, 11) of 6 with respect to qli is:
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Q(b, T) =O(T( . T)×xSet(T(b, VJ')), rQ).

The restriction function ro is defined as follows.

I (Vz E y,r(.rx. 1)

I) (otherwise).

where for (xi ...... 7,) in I -,p 0(f). (Yi ... Y in If-j e , .(g).

(X .. X. , )- (YIf , y'" n) - (x 1 .... "-Yl .. .. ) E x". fJ (f)'
fe4'

2.4 Many-Sorted Data Algebra

So far, we have introduced the notion of data algebra based on universal algebras. In this
section, we extend the notion to many-sorted universal algebras instead of universal algebras.

First we consider a niany-sorted algebra with sorts S. [-or a sort s in S, let us denote the
universal algebra of the sort s by A5, and let A(s) be the collection of all subalgebra of A.
Further let A(S) be the closure of USES.A(.s) with reslect to the cartesian product operator.

A set of data algebras D is the many- ,orted data aigebra.q with sorts S, if

Vb ED 6 = (A,r), AEA(S).

We call the data algebra of the following form as the primitive data algebra of sort s.

6 = (A, r) (s E S).

We assume that any primitive data algebra of sort s will never be derived from primitive
algebras of different sorts with fundamental operators. Namely. any data algebra of the form
(A5 , r)(s E S) will never be derived froim another data algebras of the form (A', r) (s' C
S - { s}) with fundamental operators.

From now on, we assume that data algebras are constructed on a many-sorted algebra.
even if the sorts S is not specifically stated. In another word, data algebras are generated from
primitive data algebra in the sense defined in the next section.

2.5 Generated Data Algebra

For a given set of data algebras, we acan generate data algebras by the fundamental operators.
such as aggregation, restriction, abstraction etc. We call a set of data algebras algebraic
family of data algebras if it is closed under these operations. For a set D of data algebras, we
can consider the minimum algebraic faiiilv of data algebras that contains D. We call it the
algebraic closure of D and denote it as D. Since tlue intersection of algebraic families is also an
algebraic family, it is obvious that there exists a unique algebraic closure for any set of data
algebras. In fact. the closure of D is the intersection of all algebraic families that contain D.

Conversely, we can consider the minimal set of data algebras that generate a given set D
of data algebras. Moire precisely, we cai consider lwe ,(, 1) )f dataal gebras such that:



* the algebraic closure of K(D) contains D.

tz(D) D D.

* among the sets that satisfy the above condition, N(D) is minimal. NamelY, for a set of
data algebras E, if

E D D and '(D) D E,

Ihen

D=E.

It is not difficult to prove the uniqueness of K(D) up to isomorphisn, if D is finite. Namely.
it is not only minimal but also minimunm. So we call it the kernel of D. The kernel of a set of
data algebras will provide the building bricks to construct the data algebras.

2.6 Named Data Algebra

The notion of data algebra will provide a structure of the space to express our knowledge.
However, the structure itself is not enough. For example, we can express --absolute temper-
ature" and "half line" by the same data algebra as "positive numbers", which is defined in
section 2.2 as an example. Moreover, we don't want to allow operations such as:

I°K + 2cm.

Thus we need to distinguish the data algebras that are expressions of "absolute temperature"
and "half line." Hence, we attach names to all algebras to distinguish them. We don't allow
algebraic operations between the elements of data algebras with different names. A named
algebra is expressed by a tuple:

(n5, A6 , rs).

In the rest of this report, we assume that every data algebra is named. However, when we
don't have to consider the name explicitly, we use the previous notation without a name.

2.7 Hierarchy of Data Algebras
In the later chapters, we will see that data algebras play the role of model of a knowledge
representation (schema representation). In order to express the hierarchv of knowledge. we
introduce mappings among data algebras. First we assume that there exists a partial order
-< among names of data algebras. If n -< n', we say that the name n is a .,ubnum of n'. A
subtype mapping is the mapping from a data algebra to another data algebra, wvhich is defined
as follows.

Let us consider the many-sorted data algebra on the sort S. Let A be the set of universal
algebras corresponding to the sorts.

A I I s E .5'}.

Let D be the many-sorted data algebra on S'.

D = {= (n6, A6 . r,)}.

A subtype ini)j)iIig /) froiim a. (lata algebra to a nother data algebra (V is the mialpping Ihat
satisfies the following com(litiois. let uIs assunme that

= (i.A.r), b' = I', A'.r



* Case 1: The data algebras 6 and 6' are primitive algebras.

- The name n is a subnanie of n' and the algebras are the same.

n -< n' and A = A',

- The restriction function r is stricter than r' and the p is lie ihclsiot tt rppril1.
Naniel.,

Vx E A,r(x) 1 => r'(x) 1,

O(p)= {x E AIr(x) = 11,

Vx E O(p), p() = x.

* Case 2: The data algebras 6 and 6' are compound algebras:

1 (,. H-J Ai, r), 6' = (a', i A'. r').

- The name n is a subname of n'; n -- n'.

- The attribute ' is a subset of 4,; 4' C (,

- For each f in ', thereexists a subtype mapping pf from (Af, -f(r)) to (A'S.,,f'(r')).
whiere

1 (if3y(7rf(y)=x)A(r(y) 1))
f (r)(x)= 0 (otherwise),

rf is the projection from HgEcAg to As.

Similarly for -rfl(r').

- Let I be the projection from rIfE A1 to flfEo, A-. Then,

VX E [IfE4 Af, r(x) = 1 :=> r'((wrSf,,pf) o[[(,i') [1.,

where 1r-fE1,P is the product mapping-

Vx E 'IfEV V9E 'D', 7rg((' , . p)(,"(.r ).

- The subtype mapping p from 6 to 6' is defined by:

p = (rf E¢,pJ) o 11.

We say that 6 is a subtype algebra of 6' if there exists a nubtype Inappint fron , to b'.

If there exists a subtype mapping from 6 to 6', 6' will be a model of a more .eneral colncept
that the concept that has the model 6. We will discuss it precisely in ('halpt r 3.

3 C-Classes

In order to formalize the construct of schema objects, we intoduce i tie iotion of ('-a/a,.,'.

lirst we deliite t ho struct tire of ('-classes.

"C('-laSS Is a kind of class. Tie' letter C in "C-class" Is inte ded to sw ,. t c -lc p
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3.1 C-Class Construct

The set F of C-classes is defined as follows.

3.1.1 Definition of C-Classes

- {I ( P-,. T, A, R,)

The intended meaning of symbols is:

" The name u-, of -1 is a symbol that designates the name of the C-class -y. The symbol i,
unique to each C-class.

* The attributes set (D-, of -y is a set of function symbols that designate attribute names.

* The attribute value v-, of - is a mapping from D-, to the set of C-class names in F.

" The structural sentences T-, of -/ are a set of sentences that define the algebraic structure
of a universal algebra, which specifies the structure of the representation.

" The auxiliary sentences A., of I is a set of sentences that defines new functions and
predicates concerning -. A, is used to simplify the expression.

" The restriction formula R, of -f is a well-formed formula with one free variable. This
formula specifies a subset of the domain of the universal algebra defined by T,. It is the
restriction condition on the domain.

The above construction provides a language for conceptualization of the real world. But
we should keep in mind that our conceptualization is always incomplete. Since any object in
the real world has almost infinitely many attributes, our conceptualization of the object will
be only an approximation. We should distinguish between "real conceptual world" and "our
conceptualization." The real conceptual world is the complete conceptualization of the real
physical world. In the real conceptual world, a concept can be characterized by the set of
attributes. Namely, any two distinct concepts have different sets of attributes. However our
conceptualization may not be complete, two distinct concepts may be expressed with identical
attributes. Jlherefore we need C-class names to identify each distinct concept. (It is true that
we can carefully choose attribute names -, so that any distinct concepts are expressed with
different attributes in our conceptualization. However, it becomes fairly difficult to design
sclema in such a way, if the schema is big. Moreover, if the schema will change in the course
of time. the maintenance of consistent attribute names will be much more difficult.)

3.1.2 Examples of C-classes

We use the prefix notation for +,-, > otc., instead of the conventional infix notation. The
only excPption is equality =.

* Integer In our model, we treat integers as the instances of a C-class.

[ I fyrr (integer, O, ., T1Jntger, .At,. Ti1 1").
where
Tzt, ,qr= {Vx )4 + (x, y) = + .(y..,

Vr "i Vz + (X,+(y. z)) + (ry).

etc. }.



A Integer { V'1 PO-Sttuc( X) =_> (X.0). Cc.}

"People
People is conceptualized by namne and age in this example.

N rsOII (pe Ison {I?(f II If (I!J(, cperson' Tpersonz .Aperson, 1?person).

VP1 ,Jn I( Om) = 4 ring. Lprsod (age) = integer,

where strinzg and intfup ; designate the C-classes that have algebraic structure of slt rme,
and integers,

Tf{, V rl( nanme( .), string) A T(age(x ), Integer),
VxrVy narne(miodIfy(x.person, y)) =Y

'.rVy age(m ndif y(x. person, y)) =y}I.

where modify ti signat e.. lie function that modifies the attribute values of C-classo's

=- {VX OldPerson(x) * age(x) > 60, etc})

Jlperoi) ((0 _< a~gLX) < 200) A ...

" Rational Numnbers,
The structured values, ,iich a,; rational numbers, are also expressed by instances oif a
C-class. The expressions of rational numbers are expressed by:

Rationales - ra tion1l, { n Urn. den }, VRational, TRational, A Rational, Rrationai)

where
VRational(RUM) = 'jVj0 t3 7 .1(dCn) = integer,

TRational

{VaVb num(a) .ir A nnin(b) = u A den(a) =y A den(b)=V

num(-l(a,b)) =+(*(x.t?). *(u,y)) A den(+(a,b)) = *(y, v),
etc.),

-- attnal={Vx Invr'etible(x) =_-(nuin(x) =0), etc}.
Rrtrion,ii(.t) = '(deln(.) = 0).

* Set-of-irteger
A -et of a concept is expressed as a C-class without attributes. W'e assumne that a
predicate symbol T is p~rov'idedl to dlesignate the instance-class relation. %Ve also assumen~
that each set C-class has a standard predicate In, such that In(x ,y) mieanis x is in a set
y. We will extend this example to a general case later.

Set-ofJIneger = (set-of-Inteqler. 0, 1,T~~ -ASet ,f -Integer, RSet-of-Integer),
{It J(.r, y) =U(y.,.r). l(.u(y, ))=U(fl(x, y). fl(x. _-)), etc.}

Rsetofjitrqer,(.r) =(VYm In( y. Ir ) => T( y. integer)).
ASet..-f...iiaejr -{. )crcct(

In above examples. we have ut rodiiced relation svnm ols T and In. Froin now% on. wve ;1S,11 IM,'

these sYmibols ;ire part of the basic constnrct of ( -classes.
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3.1.3 Primitive C-Classes

Let us consider a concept with some attributes. We may say the concept is constructed by
tie concepts that are attribute values of the concept. To formalize this intuition. ,,,p Impose a

condition on the structural sentence T-, of the C-class with non-empty attributes. If it is not
sl eciallv declared, we assume that aiiy C-class with non-empty attribites 11as the I rni t riidI

nces "7. contaifning tie following sentences TO

7,0 r- r\

Let ,1,w be {f. . fn}, then

{-< ) VXVy f,(,zodify(X,f,,y)) y I i 1.......} U
{V.r T(f,(x), v-,(f,)) i 1= .. n}

The function syml)ol modify designates the function that modifies the attributes of C-classes.

Tle typical model of the sentences To is the cartesian product of the attrib ites spciied by
I. Hence all the C-classes are constructed out of its attribute C-classes,. if their attributes
are not empty. It this sense, if a C-class has no attributes, we call it a prinitirE ('-class. A
C-class that is not primitive is called compound C-class.

II the last example of Section 3.1.2, we have shown that the set of integers is expressed

as a primitive C-class. Later, we will extend this example to express the set of aii.v C-class
as a primitive ('-class. This may seem a little bit strange, because it contradicts the term
.'prinitive." It may be considered that the set of a C-class should be formalized as something
complex. We use the term "primitive" meaning "structureless." In a model theoretic sense, a
set C-class is structureless, the operations that are allowed to them are the standard uion7.
interection etc. There is no algebraic operation that accesses its "sub-structure."

3.2 Universal Language

Since the description of concepts is essentially local to each concept, there may be inconsis-
tencv in the name of function symbols and relation symbols. For example. a person can be
conceptualized by a C-class Person:

P +rson = (person, {name, address }, VJprson, 0,0, Tt IuE.').

On the other hand, a subconcept Student of Person may be expressed by a C-class Student

Student = (student. {sname, re-sidence}, C'stud nt, 0. 0, TRUE).

InI this case, s-name and residence are intended to express the name and he addrfss of the
sttident respectively. So, in order to designate the intended equivalence of these symbols, we

need a common language. We call this common language universal languaq,- of F. Later. we
n,,d the ciminon language to define the hierarchy of the concepts. The precise (efinition is

as follows.

3.2.1 Universal Renaming

In ,rden to dedscrih tlie correspondence of attribite na nies of ('-class descripitions, we deli
tli iot ion of 1., flaming as follows. For i being 1 or 2. lot L, be a tirst oih ir liiiqii .- ' ii 'de (d
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set V, of variables, set .Fi of function symbols and set R , of predica)te sv ubols. A u ?aiung o
from LI to L, is a collection of injective iiiappings fromn VI to V, .FI to F.) and R, 1 to0'% 2Z:

=(a,aj,ar), a:V1 -V,), 1 - .F .: -P P

>nIcli that it p reserves the similarity t vpes of funct ion sYmbo)01 andii predicaite ,vnibol)s. Naiiielv.
if a function symnbol f has n arguments, af( f) also has n arsuiiieiits. Similarly for predicate
,Vm bols. Note that thle renaming a induces a iuiject ive iia l)Iing from I., to L2 .

Let 1,( -,) he the language generated by the syniibols of the description of -,, Then a langutage
L Is the univ rsal language of r, if there exists a set N of reniimiings suih that:

N fa Ic I E r

V) E Fa.,:L(-f) - L.

III a lpractical case, we may require that the symbols of thle samie intended meaning will be
imappedl to the same symbol in the universal language. InI the ab~ove example,

apr nname) asttidenii I soamc)l

Operson( address) Ostudent (? (.ide ncF).

Hlowever these are mneta-conditions. TheoreticallY the miorphisnis N determines the semantics
of symibols. If we have

aperon(name) = astudent (re; de nce)

it means that the 'name' of 'person' has the same semantics- as residence' of *student'. although
it is (different from the common meaning of the words '-name" and "residence." The set N of
renamings is called universal renamning of r.

3.2.2 Local Renaming

III the actual programming, it is difficult to describe the global semantic equality from the be-
iiuiing. We can only specify the semantic equality locally. i.e. we only p~rovide the renamning

b~etween the (description languages of C-classes. In the above example, we may providle the
ronamilig "St udent, Person from L(Student) to L(Person). When we have provided renaming
between the description languages of individual concepts. we expect that there exists a uni-
versal renaming, which is compatible with those renalnings. Before considering the existence,
we introduce the conditions that those locally defined renainings should satisfy.

Let 6' be a subset of r x r, and let J be the set of injective renamings among L(-t )'s, suich
that

= j ~Lyl-L~)(~~)C(
WVe c-all ((,, J1) as the semantic local r'enamning of F if the following conditions are satisfied.

1. Transitivity

whoro cIs lie composition of mappings.

2.IC oii Indhu~ep~end~ence
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:3. Acyclicity The binary relation ( has no cycle.
The first condition expresses the global semantic compatibility of the ruorphisms. If a

sym bol s is semantically equivalent to a symbol s' and( s' is equivalent to ,". then . shotlh hi,,

equivalent to .," 1by the transitive rule f equivalence relation. The second condition desig ale>
the consistency of the inherited attribites. The third condition describes the relevant s' ruct u
of a hierarchy.

Note that we can eliminate the first condition. In fact, the second condition (tuaratttee,
that we can extend (G, J) to aiother semantic local renaning (G', J) so that G' is transit iv.

3.2.3 Existence of Universal Language

If we have a local renaming, there exists a universal language and universal renaming such that
the universal renaming is compatible with the given local renaming, under a certain conditiot.
Let us define a partial order -_(; on V by the binary relation G.

" Wc; d (/) G.

Theorem 1 Let F be a set of conccpts. and let (G, J) be a semantic local renaming of 1. If G
is at most cotnntably infinite, and F has the finite minimal elements with respect t o , thert
there exists a universal language L and the universal renaming N of r to L, such that

0A.. r ' E 0 . = t 0 C(

where

N {c. yE F}.

3.3 Fundamental Operator on C-Classes
In order to construct complex C-classes out of given C-classes, we define several operations
on C-classes. These operators are some abstraction of the mental process of human beings to
create new concepts out of existing concepts. These fundamental operators correspond to the
fundamental operators for data algebras. In fact, the fundamental operators on data algebras
will provide the models of the fundamental operators on C-classes.

3.3.1 Aggregation

['or given C-classes, we can create a new C-class by introducing a C-class name, attribute
names that correspond to given C-classes, a set of sentences that specifies the structure similar
to a cartesian product such that the iattribute names are designating projections. Let -" be a
sequence of C- ilasses.

, n =.. .

at d let 4 be a s(plence of sYml)ols with the same longth as 5,

) (f. f . f,)
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We express each component C-class in " by:

7i -=  (ni, 4 j, vi, T,, A,. Rj) ( , ., )

Then the aggregation II(nn, ,7. 4)) of " is defined as follows.

ln it., I) = (nn, C. vrj. Tn, AF,Rjj)

* The name nrl of the aggregation is the symbol that is compatible with other (-classes.
Namely. the symbol never appears as the name of other C-class.

* The svmbols in 4) are the attribute names of the aggregated C-class 1I(in-. 4)).

* The attribute value cH is the mapping from the components of 4P to the set F of C-classes.
such that

1 <_ Vi < It, vn(f,) ='i.

* The structural sentences TH is similar to T° for a C-class 7 with non-emlpty attributes.
1TH = {Vr VY f,(modifY(x, f, y)) = I i 1.. .n} U

{Vx T(f,(x ), r 1(fi)) I i = I ..

The symbol modify is the function symbol for the modifier of attribute values.

* The auxihary sentences may be any definition of new function symbols and relation
symbols that simplify the description.

* Each component of the aggregation should satisfy the restrictions that are imposed on
the attribute value C-classes. The restriction predicate Rrl is defined by:

rl

R (x)= A Rj(f,(z)).

The aggregation of C-classes has a model that corresponds to the aggregation of data
algebras, which was defined in section 2.3.1. This will be dscussed later.

3.3.2 Recursive Aggregation

Let G be a directed graph with a set of C-class names V as nodes and labeled edges E. Let U
be a collection of niodes in V, such that there is no incoming edge. Further let M" be a subset
of V that contains U,

U C W C V.

We assume that for elements of W, C-classes are given. We denote an element of E as (n, muy),
which designates the edge from n to 7a with label g. Let 4P be a set of symbols that has one
to one correspondence with V.

41 (ft CE V}.

The recursive aggregation ll(7ni, G, 4)) with respect to G, 4D and IV is defined as follows.

llu'(nnf,, G, (D) = (nij-p, ., -. Af, Rfi ).

* Th,' symbol ,i is a new ('-class name.

* The symi si, + are the attribute names.
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* The attribute values are provided by the one to one correspondence of P and V.

VL' E I t'Fj(f".) = v.

* The structural sentences express the nested structure defined by G. Let V be (VI . .k);
we consider V as a sequence.

T- = {VxI ... Vxk f,,,(con tfi(x1 ...... 'k)) = i . U
{VxT(f (x), .v)I I E V } U

{VxT(g(f,(x)),u) j ( v, i,g) E E

P The auxiliary sentences include recursive definitions of restriction predicates for compo-
nent C-classes.

Afi = U t,-vw{Vx R,.z) x = i ) V (A(vu,)EE 1? (f/(. )}

where the j_ is intended to designate the itull value in universal algebra. For t in V - W.
the "v',th" component of fl(G, P) is a C-class with recursive structure.

The restriction predicate designates that each component should satisfy its own restric-
tion predicate,

Rj =_) A Rd(f,.(v)).

EV

3.3.3 Abstraction

Let -/ be a C-class
-y = (,.,~. 4-'.,i, T-", R. /,).

and let %P be a subset of ¢D :
, = {g,...g,,,} C

The ab.t raction T(nT, -, T) of - with respect to 02 is defined as:

T (nT ,-y,T) = (11T, q, ' , TT- , A T , R T ).

The definition of nT, TT, and AT are similar to those of aggregation.

" n-f is a symbol, which designates the nan1 of T(UT.Y, kP).

" TF is the set of symbol that designates the attributes of the new C-class.

" The attribute values are the same as those of f,

Vg E 4) r-r(g) = i'-(g).

" T is the structural sentence defined as follows.
TT = {Vx Vy g,(modif (:,g.,y)) = I . u

{Vx T(.q,(x), v-,(g, )) I,= 1'.,

o I , restriction relation RT is defined ;i.,:

I (R ) - ( ., T (.y, A. ) ? -^ (, ) A ( (' ) = : ( r ) )
p-D q
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3.3.4 Restriction

The restriction operator replaces the restriction formula of a C-class by fhe conjunction of the
original restriction form ula'and an unary predicate ". For a C-class 7,

- = (12,. '-, r,. 7,. -\,, R,),

the restrict ion of -, by an an ary relation ' is

0 (_). , S) = (n 4, ,, c',, T-, .,, R-, A S).

3.3.5 Set Construction

For a C-class -1
7 = (uv, ',. r-,, , x., R,

tie set of - is defined as follows. This (lefinitioln is ain generalization of the example discussed
fo~r Set of - n tcgr before. The relation symbols T and In have t h, same rireaning as lit tIe
example of S'tOflIntger.

St ( 7"qe ... = n ,, . 0, _L . T[ +, t set(- ) l t(-r))

where
l ;,t(.+)(x) =_ ( y in(y,, .,,/ :- ),

The structural sentences of Set(n.. ,re just the theory T.,,! of set for any C-class

The auxiliary sentences As t may be defined arbitrarily to meet the appropriate description
of C-classes. Although Rset sayw nothing about the cardinality of the set, we assume that the
cardinalitv is finite. More precisely. we only w, ,/e , ,"e setb a., the model of the set ('-class
Set(nset, 7). Combining Set operation with restriction operation. we get a more general set of
C-classes. More specifically, subsets of the set St(n st, y) of a (-class " wi!l be expre-,se(l bl
applying a restriction operator to St(nSt, ).

3.3.6 Categorization

Once we get the notion of the set construction of a C-class, we (:an categorize the elements of

the set by concerning some attributes. i'- the categorization, we ignore the other attributes
that are not interested. We obtain a set of set of a concept by taking a categorization. We
define the categorization operatoras follows. Let " be a C-class, aid let the interc.tcd attrd'1tecs
T be a subset of the attributes (D,.

- = (,1", 4,-, r-,. 1T, ,, R) C ,P.,.

The catogorization Q(vn, ,,y, ) of the ('-class y with respect 4p is:

where

B i u .) i -_ (VyVuVi'r n(y,.r) A In,' .it, A In( v.. )
= . ( it,)A TV(r.7+)1 (Ajf P(f(,) = fi,)

I°VWfa s"tSUme hat the free variahle of th ,,', forii l;,- are tie' ;,mwie
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3.3.7 Generated C-Classes

We can consider the closure by the fundamental operators on C-classes in the ;aine manner
&Sd ita, algebras. The universal family of C-classes is the set of C-cla,ses that is closed under
fundamental operators. And the univer.,l closure of C-casses is the minimum universal family
that coitains the C-classes.

3.4 Hierarchy of C-Classes

T|o foinalize the hierarchy of concepts, we introduce a partial order among C-classes. We'
assumiie that ('-,ari...-s (re described in a universal language. If concepts are precis,,ly expressed
in the real conceptual world, we can express the hierarchy of concepts by referming to only
attributes. Namely a concept has more attributes than its superconcept. Thus w, can expres
tle conceptual hierarchy by inclusion of attributes. Roughly speaking, we can I'i rialize it a.
follows. Let c.c' be concepts, and let the attributes (D, , be the attributes of c. c' wspectivelv.
Then c is the subconcept of c' if and only if

4) D 4,.

Ilowever as we discuss in Chapter 4, our conceptualization is incomplete. Hence we cannot
specify the hierarchy only by its attributes. We need to specify the hierarchy ONplicitly by
introducing an order in the concepts. So we iintroduce an artificial partial order -<, on the
name., of ('-classes. Let n1 , 22 be the name of C-classes - 1,72 respectively. We say ni is a
sUbriante of 712 if

n1 -n n2.

W'e assume that the type iatching predicate T that is introduced in Section 3.3.5 satisfies the
following condition

VnIVn 2 nI -< n2  (Vz T(z, n1 ) = T(x. inf,)

Ve include above sentence as a part of our theory. With this name hierarchy, we introduce a

hierarchy among C-classes.

Lel ?,. '2 be ('-classes,

,,= (71, 0,,j v,, T,, A,, R,) (i = 1,2).

Then - is a subclass of "Y2

"Y1 2

if the following holds.

(D2 9 (PI, 'Vf C V2 c tf) r c( I'-( f))

1= Vx RT(. l,111ifl) :€ R2(x),

'vhier,,/r,(f)) designates the C-class with name r,(f) (i = 1.2). and

lRy(_.,,tV)(.) = yT(y, ni) A lI'(y)A A ( .qy)

Sincv oach ('-class has a unique name. "e could have defined the hierarchy mmlv by the

laniMe hierarchy. H1owever, as we (li.cussed above, he i namie hierarchv is a coiiiprinliiise for olir



incomplete conceptualization. Therefore it is natural to reflect the effect of attributes in the
definition of C-class hierarchy as much as possible. Thus the attributes of C-classes play the
major role in determining the hierarchy of C-classes.

We should note that we can have the most general C-class in the following way. First we
assune that there is the greatest element, say top. in the name hierarchy. Then, the most
general (C-class -IT is:

I" T op, 0,_-L, 0, 0. TR UE).

\We assume that the theory T= of equality is always implicitly included in the structural
sentences for any C-class 'y.

IL- = =XIU{VxvyX=Y Y X
U{VxVyV- (x = y A y = z) r . -

Thus if we express T. to be empty, it means the structure is specified only by T_. Namely. it
is just the structure of a set.

3.5 Conceptual Order and Fundamental Operators

The conceptual order is the realization of semantic hierarchy of concepts. There is a close
relation between conceptual order and the fundamental operators, as shown in the following
theorem.

Theorem 2 Let , = {7i}i=1 and y' {7y}= 1 be C-classes. Moreover, let n and n' be
iiew C-class names such that n -< n'.

* Aggregation
For attribute names 4D,

(1 < Vi < n,yj -< y, ) = (fI(n,, .) IH(n', ', 4))).

o Abstraction
For a subset P of the attributes of y.

n. -, it 7 T(P..j,.(D')

* Restriction
For a unary predicate S,

=> _ 0-y ( S) 7

* Set Construction

7 ' Se.t( n.,) 4 Sft(n'. K

S(ategorization
If the .,et of attributes q is common m , and "'. th(n

The proof of the hlheorcin IS esV, SO it i. 0111itt (o .
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3.6 Generalization and Specialization

In our mental processes, we generalize several concepts by taking the common attributes of
those concepts. For example, we get concept 'niamnmal' by generalizing 'dog', 'cat', "monkey'.

etc. On the other hand, we specify a concept as the semantic intersection of several concepts.
For example, the natural number is described by the semantic intersection of integer alid
positive number. We formalize these mental processes using the conceptual hierarchy providslI
above.

Let us assume that a conceptual hierarchy -< is given. First we introduce some notatiol>.

Let {yi }L be a set of C-classes. If the least upper bound of {-yj }= with rcspect -< exi>rt.
we denote it by

VI.
t=1

If n = 2, we denote it by

11 V 12.

Dually, the greatest lower bound of {, }>1 is denoted by

71

A
or

11 A 72.

By definition, the operator V and A are commutative and associative. Furthermore,

'I

V:

I I

z= .

Now we define the generalization and specialization.

The generalization of {7, In=I is defined by the least upper bound v= n ' [in particular
the generalization of two C-classes -y and -y' is -f V 7'. As stated above, any generalization

is described by the operator V. We call V the generalization operator. The definition of the

specialization is similar to that of the generalization. We replace V and "least upper bound"

in the definition of generalization by A and "greatest lower bound" respectively. We call the
operator A the specialization operator.

Similarly, we introduce operators V, A in the C-class names, according to the name hier-
archy.

Due to 01porem 2, we have the following theorem.

Theorem 3 Let y,y', 7 = {C} 1 ,7' = {'h}L bt C'-clr,,es.

* Aggregation
Let j A -' be the sequence ( j A y'j.. ', A -,'), and let z V ' be (j v ." V

For a new ('-class name i. n', n", a sequence of attribute ?nra, 4),

,, A n' 7)" z ll(n. (P) A ll(n','. 4)) Il( m". A ,.'. 4P).

it V,,' It" T, II(,,,5,4)v ll(,'.'-'. 4) V H 7(, +". v ),. b).
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SA bstraction
Vor a common subset (P of attributes of -,

" An'= n" T(n,y, (D) A T(n',-I', (D) = T(n". y A -', (D),

" V n" T(n,, 1) V T(n', ', D)= T(n", V -1, 4)).

* l(Sftitof
lur ( unary pre(dicate S,S',

nAn' n" 5 A(, SAS') =0 (7,S)A ,S'),

n V n' = n" 5 V(, SvS') = (7.S)V O(7.5").

• .S't ('onstruction

n A n' = n" Set(n, -y) A Set(n'. ') = Sct(n", A )'),

SV n' = n" Set(n, -) V Set(n', ') - Set(n", - V y').

We should note that in the previous two theorems, we always have to specify the name hierarchy
to obtain a reasonable result. The name hierarchv is an artificial hierarchy and we have to
assign the order in the names of C-classes so that they are compatible to the natural semantic
hierarchy of concepts.

To summarize, we have introduce the notion of C-class and an order among them to
formalize concepts and the semantic hierarchy of concepts. Moreover we have introduced
formal operators on C-classes that provides a formalism of mental processes that produce new
concepts out of existing concepts. Finally, we have provided some theorems to show that the
formalism provides the natural relation between the fundamental operators and the concept
hierarchy, which is one of the verifications of the correctness of the formalism.

4 Models and Instances
So far, we have discussed the notion of C-classes, which is the formalization of database ,chema
objects. Now, we are going to discuss the actual data that will be in a database. We regard
a iatabase as an expression of the real world. Each concept in the real world is expressed by
('-class defined in the previous chapter. Each occurrence of concept is expressed as an instance
of C-class.

In the framework of a value-oriented model, an instance of a C-class is just an element of
the data algebra that is the model of the C-class. The occurrence of a compound ('-class is
determined by the set of attribute values. However, as we discussed in Section 1.1, we cannot
capture the real existence of the occurrence in this paradigm, because our conceptualization is
always incomplete, i.e., an approximation of the real concept. We need something other than
attribute values to distinguish the occurrences in the real world. It is so-called object-i dntity.
which will be formalized.

In this chapter, we first define the value-oriented model of ('-classes. A value-oriented
inodol of C-classes is a collection of data algebras that are specified by the C-classes. lhe
data algibra provides the space where the structure of the real world objects are expressed.
Next. we will extend the value-oriented model to object-orientcd model by int ro(lucing the

obtec t-identity space.
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4.1 Value-Oriented Model of C-Classes

I.et F be a set of C-classes generated by fundamental operators from a set F0 of the primitive
'-classes, and let

D 6,= (n,,A,,.r.), -7 E F}, _

he tie pair of a many-sorted data algebra with the sort S generated by I'(. and the name-
li erarchv of data algebras. Then D is called a cahzc-oii utoEd modd of F, if the following
on(litions are satisfied. Let -f be an element of F such that:

"y = ( n.,. i ., r,. T,. A", R.,).

" Primitive C-Classes
Each primitive C-class 7 satisfies:

- The universal algebra A, is the algebra corresponding to a sort in S.
- The restriction function of 6, is the interpretation of R.,. We assume that each

predicate will be interpreted as a function to 2. where 1 is regarded to be TRUE.

" Compound ('-Classes
For any compound C-class -y, A-, is a subalgebra of II:. A,(11 ). Typically, when T., is
equal to T°.A., is isomorphic to the product algebra IIfE¢pA,(f) itself.

- Each function symbol f in -, is interpreted as the projection from HIfEJ, A,.f) to
At,(f).

- The restriction function r., is also the interpretation of R-,.

For a C-class -y corresponding a concept, an element of the data algebra 6, represents an
occurience of the concept as a value. We call the element a value instance of -y. Furthermore.
the data algebras should be compatible with the hierarchy of C-classes. Namely,

V-,V-y' G r, - -< -' => 3p-y,., : 6-y -- 6y, (p-,-, is the subtype mapping from Iy to y').

For the top C-class, we have a model 6 T that is set theoretically isomorphic to the set of
object-identities. which will be formally introduced in the next section.

6T = ((Q,0), 1).

4.2 Object-Oriented Model of C-Classes

The value-oriented model of a C-class provides the base of the algebraic structure for expressi Ig
occurrences of concepts. In this section, we extend the value-oriented model by the notion of
) bjct-identity. We will introduce object-identity space to express the real existence of objects.

Let D be a value-oriented model of F as defined in the previous section. Let S1 be the pair
o a set Q with an appropriate cardinality, a collection F of partial functions from Q to itself.
\Ve call Q he olb))ct-idcntity space. Further, let I be a collection of partial functions from 12
to a data algebras in D for each in F. Namely,

D = {b-jy 'E I},

I = {-,.I, : o, - F}



Thie partial function t-, is called tie irodoIancc appi ng of -j. The domain 0('y ) of i-, is c'alledl

the object instancces of -y.
Thien, an object-oriented miodel ."(F1 of C-classes F is a triplet

A4(Y)= D QI)

wiihici l atisfios tit 10 Ioi ing curiditions.

* Let b.~ e 111 I. If -1 - ,' Olwn

0 C O) C ) and V,,; E 0(-y) p,.,,)

where Is the subtype mnapping fromt y to yf' in the value-oriented m1odel D. '1711
condition shows the comp jatibility of the hierarchies of the object-identity space and t ie
value-oriented model D. Note that the hierarchy of C-classes in the object- iden titY spac,
is, expressed bY thle set Inclusioni of ie(- domains of instance mappings.

" For each function symbol f that appears in the description of C-classes, there is a corre-
sponding partial function o(f ) in f.

" The mapp)ings o(f )'s are relatedl t~o thle value-oriented interpretations v(f )'s via t ie( mna p-

pings I In thle following way. Let us take a function symtbol f that appears in t he (le-scrip-
ion of C-class,.es, which bas a sigrnat urei n1 n2 n,- n, where n and iz, s are conicelit

namres of (I-c&asses s.Thien we have the commutative equation:

7 )Oo~f)11(f )oi r ' Zi

T
Hin=16

o'(f): v1,= , f)(:Q

T iN 1, 1 ie li"roduhct Inapping of i, - ,.

Tile dIata aILe'rai 6 ((ripl~lotidls to the ('-class -; ad iis the instance itiiapiiiiiit (of-
Sit il ariv dat algebrA 1 , ;1nd( in>?alice mnapPing" i, for. <, I < K m).

" ' t, ioi d -nii i iiiliA i Il)x i, In [( ;13 S5]
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The above commutativity is the essence of our iiodel. It clearly separates the "object-
oriented part" and "value-oriented part". We call it fundamental commutativity. Further, it
demonstrates the essential difference of dn obj,ct-oriented data model and a value-oriented
data model. The difference between object-oriented model and value-oriented niodel lies in
tle object identity. There are several features other than object-identity, which are generally
considered to characterize an object-oriented model. such as complex object. inheritance, etc.
lovwever, as we will see later. the semantics of those features can be captured by the algebraic
construct, such as types, aggregation operators, when we express instances as elements(values)
of a data algebra.

The set of instance mappings {-i I I E F} is called an schena instancc of F.
The object-identity space Q is a flat1 2 set wit Ii a set of partial funct ions. The value-oriented

model D provides a structure on fl, which is called talhe space of F. The instance mapping
of a C-class expresses the correspondence between object instances and value insta.ices.

\Ve have a natural ordering for schema instances. Let the obj ct-identity space Q and
value-oriented model D be fixed, and let I and ' be schema instances of F:

I = I F I' = {'1, c F}.

\\c call the schema instance I the schema subinstanrf of ' and denote it by

I -_I',

if
V-7 E F, z' is an extension of z.,

This ordering is useful when we consider the schema instances of C-classes with recursive
structure. Obviously, the order is a partial order. If I and I' coincide on th. intersection of
iheir domains,

V, EU, Vx E O(,,) n0(t, ), ,(.r i)= ().

we call them compatible. It is easy to prove that an?/ set of compatible schema instances has
i//( least zipper bound with respect to the abore order.

4.3 Induced Mapping on Instances

In this section, we discuss how the fundamental operators on (7-classes are interpreted in the
object-oriented model.

ThFlep induced fundamental operators are the inappings that transform instance mappings to
other instance mappings. For given C-classes, we can create new C-classes using fundamental
operators. Accordingly, for the created C-classes, we can create instance mappings out of
instance mapping of original C-classes. In this section, by the term "Instance mapping", we
iiieaii partial function from object-identity space to a data algebra, which may provide an
object-oriented model. As discussed later, the induced instance mapping will not provide an

ject-oriented model for a certain kind of fundamn,,tal operators.
Let us assume that an object-oriented model Al(1') of F is given:

M(3= (D,.I).I { ,:h-, ,, c i}.

i-' i i, t,'rnJ 11(1t. we' itian that no element of the set ha.s ait rmn-tuir,



We assume D and Q are fixed. As defined before, an instance miapping z, is a partial function
from the object-identity space Q2 to the data algebra -,. We denote the domain of an instance
mapping z, by i(z,). Let z, be the instance mapping of y in 1,

(n,, , r-,. T.,, -. R,).

" Restriction
Let S be a unary predicate that is inteuded to impose a restriction on . The induced
restriction op(rator )(. S) is defined as:

ded

( ( .

hituitively, the induced restriction operator takes only instances that satisfy the predi(al
.5. Note that the predicate sYmbol 5' is interpreted as a mapping from ', to 2.

* Abstraction
Let 4I be a subset of P. The induced abstraction operator t(.. kI) is defined by:

V, E t((',)), (-, )(O) - PP 0 I-"),

where Pp is the projection from HI- A j to UlgEAg.

" Aggregation
The induced operator for aggregation is different from the above operators, because it

a contrnctive operator. Let yi be a C-class and let z, be the instance mapping for
(i= 1 .. n). Then the induced aggregation operator ft(.) is defined as follows. The
domain d(Il((zi ... z,))) of the induced mapping is a new subset of Q that has one to on,
correspondence to T,= 0(7) with a mapping c:

Then the induced instance mapping is defined by:

dc (17,,= i,)oc.

There is a certain technical details, about the aggregation operator. If we have already
an instance mapping z for the aggregated C-class, we impose a condition to the invelitioli
of objczt identities so that the newly derived instance mapping is an extension of t ie
existing one.

Recursive Aggregation
The induced operator for a recursive aggregation is obtained by inductive limit of gen-
erated instances. More precisoly, we first define an inflational operator to produce new
instances. 'lhon% w, take the limit of uccessive applications of the operator.

Let G. 1, t'. U'., It' a id ,D be the same as in Section 3.3.2. Let F be the set of (-clas,(,
corresponding V, and let D be the object -oriented model of F,

V = I it E V). D = J a, I , i V).
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Furt her. let I be the collection of all schemna instances of 1' We dlefine an otuerat~ tir
fromn tim, I to 1. Let I be in 1,

I {z~ ~ - u E V}

1 1
i C

'fI i'1

where 'vde-igiates the least upper bound with respect to the schemia instance ordering
defined ait h le end of section 4.2. The instance mappings w()is defined as I he ilinial
schcnia Inst ance that is compatible with I such that it satisfies the following cotidiliOn.

Vv' E I1.1",I~ = jv,

VL' G V - W1. VttVg s.t. (v, u,g) E E, 7r 9 (i'(j)D i.

%%here .l ln (I ), ) ) and ( u,) are codornain of ~w( ~and s(i respect ivolY. andi (Is thle

project iu corr-cspoiiding the cdge (v, u. g). Note that cjv (I) miay not he iiiiIC . For a

giveni scieriia instance 1. we construct a monotone increasing schemna inistiuice sequence
{ , ,~ by applying vv successively.

10=1I, ,,+ de f (

Since { 1,,}> formis a compatible set of schema instances, wve can obtain the induictive
limit I., as the least uipper bound of the set. Then we define the induced schema instance
H ( 6', q. I V) as :

VII. { ' 2 ., --- ,Vm}, 1 ,,c {i1 ) b, 1< i < ni}.

[I(, P, IV) = Hl((ij, . ,)

Bk definition. tie Instance mappings for the C-classes in W' will not change with jv. We
call It' tlie set of stable ('-classes. If 1' is equal to V. the recu rsive ilggregation reduces
to the oiinal ag~lgregation defined above.

1-or i ;I-t const ruction. we can naturally induce an Instance miapping.. The Induced
iiiltMiftc iiiiijpping dlescribes the instances with allI the possible finite sets of original in-

~tru~ More precisely, let zbe an instance mapping of a C-class

Then inced mapping j by set construction is a minimal instance ma li1piiig suich that its
codlomain lincludes all finite sets generated by the codoniain of I.

'S~ D ~ {{. 1 . 2 .  r~ x I X ()( < i -< 7). ii 1. 2,.. .

T lif lithicril 11iia;)1)iiig Is not unique. If the C-class S'et( n, l )as iioii-iill itance iuiap-

1)i1li- 1", Irmlititlie begiiining. we construct tile Instance miapp~ing j.so that j Is tie extension
of I,.

\mndl 1, i 1 iiuli,-%ailii-d fiuic-ioii. Hlowever, %ve conider It ;-L,' aun orllhiir. hiimctioii by takiu oil kef I

v;,ii~ 1 ~~ *~i-ii 4 Cit cmi I a~ik' ptroven iisilig thc fundamenital ('(liiimtlt i
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Ca tegorization1
Teinduced mapping for the categorization is, obtained by the composition of induced

mappings of set construiction, aggregation. and restriction operators. according to the
definition of the categorization.

We slou 1( not ice that thle iduced instance iiia ppili nay not he uinique for (generalized)

agg.rega tiori. and set construct ion. This is due to the fact that these operators reqluire object-
identitY VInlvenftioin [AK\8~

Fuirthlermiore. we can introduce operators on instanices that correspond to generalization/specializat ion
operators.

Let he a ('-class,

anid let ( fzo A, f, r, ) lbe the dlata algebra corresponding to -1,. Further, let it be an Instance
miapping" of and let P, he the ptrojectioni fromi llj,A,.f to H1G(tn(2 A1 1  1. 2). If

Vf (E (P I f(P 2 Ai,1 = A2,1 anid Poil P oi. on,0i) O1)

the Indulcedl generalization a tid specializa tion of' il anld 12 are defined as follows.

" Generalization
The lnduced general'!,ation operator V Is definied as:

-if the Interc- 1-110 of -1) and <P2 is not emlpt.,

de f
V..; E 0(ii) =lV2 (.' P,(i1 (uw)) (I= 1. 2).

- if the intersection of (P and (D is enipty, the domain Of 1112 is the same as above,
arid

(mV2 :Q 6~tT (,))
inclusion miann-ig)

* Specialization
For the specialization operator on ('-classes. we liave the following induced specialization

op',rator . Trhe operator is defined as:

0(tt A.'2 ) nd(2

0I (.'1 Az2 ) = ~(1 = 1, 2).

Although we can derive new Instances by Induced operators, we ;liould note that thIese

Instances are juist possible caidi~ate instances tin outr imodel. However, in intuitive sense, if
a -class Is dlerivedl by the fundamental operator- other thani aggregatin osecnstruction.
teinst anrce mapigsol b bandb ilid nhiced operators. We should note Ithat

ouir ohj'tct-orieitod model is [irly general. hhrn-e e would get a varietyv of "actutal iniodels"
aIccorditiig, to thle way of p royviding Instance T(a)p g provi( Inst anrce mnappings by heI(
jindu1ced mnappinigs of the fitidneittal operators 11 a catotital waY of obtaiing ain ohject_

orientted ttlO(101



5 Database Design

5.1 Entity C-Classes and Abstract C-Classes

lIn our object-oriented tnodlel of ('-classes. there c-an be more than oil( object-identit v corrv-
s ponding to one elementt of (Lata al-ebra. Hecaise our conIceptInalizat ion1 IS HiCIIcorn0 fieWO
canniot characterize the real existence of objects by their at tribuit e val les. However. III ordler
to providle a represen tat on. we shoir 1( assn me thIiat t he existence cani be described by at tlibiti.

values for certain concepts at least lit a closed domain of the rea]l world. This is a miatter of
knowledgebase designl.

Hence it is importanit to anail ' ze in wvhic i c ase a C-class should be cha ract erizedI hY' its

attribute values, or more Igenera liY, in whiich case the object inst ances are equivalent to thle
value Instances. Naniel v. we shli d consider when wve should require tie( instance m1a ppilng of
('-class to be injective. lIn t his seit~in. wke coiisidler two kinds of C-classes that the jil.t a rice
mapping will be injective. One Is ihe algebr-aic (-class, the other is the logical C-class. Liirtlitr
we clai in that even thle inst al ill apping of at logical C-class has the inhlerent possi bilit v of riot
being injective, because our knowledge rep~resent ation is always Incomplete.

First, we introduce anid discuss I lie algebraic ( -classes. Let ius consider the concept, . trinq f

for examplle. What are tie( Inst anice-, of ,t rIn~g It depends on lie context flow we consider
the concept. We c'a r say t v hat cxciv string appea ring in the real wvorld cail he at inst ance of
C-class Stri'ng. (Corisider lie( following sanie sentences.

" "string" is ant Instance of' St ring.

" "string" is an Instance of .51 ring.

Thle stringm "string" in the first sentence is an instance of String which is different fromt the
instance "string" lin the sucond ,,enlrfnce. However, we often need to abstract the real occur-
rences of String andl regard tile miany Instances as a same object. This is exactly what the
value-oriented miodel of C-class Stri ng is intended to be. The universal algebra AStrozy is thle
abstraction of real occurrence, of strings with abstracted functions such as length, roncucnriiah

The algebraic model Astm, is virtual and doesni't exist in the real world. However, wve %w;itt to

treat the virtual model, Suich a~s tie( algebraA,,t7,.g as if it existed in the real world. lin othier
words, we want to allow the concep~tual existence of the abstract objects. So we Introdluce aI
ca tegory of (-'-classes whose instances are virtually the same as thle (lornain of a ii algebra III
thre valtre-oriented model. .Namelv, the instance mnapping i s injective. We call Such ( -classcs
(ilgebraic C-classes. An algebraic ('-c-lass Is a kiniu of "literal."

Other than algebraic C'-classes. there is anrot her kind of C-classes t hat inst ance iia ppin-
should lbe injective. It is thle C-class dlerivedI frount a. logical relation. We caii express a ni-ar mv
logical relation by a C-class with It at tributes. Since an occurrence of logical relation is tiothlung
but an element of a subset of the cartesiani produict of domains(object- identi ties), It Is exactly,

cli aract crizcd by its at triliite values. We call smicli C-classes loqicral C'-classes. [he nion of
I iical C clas.ses will be (Iisciisse l it (let ai with it exam plfe later lin thIis section.

N ote t hat tie( notion oif algebra ic ('- clas.,v, ii rid logical C- (lasses are( not (determin ed by
object -ormeritcd imodls. lw i r It - rc(plioetl i I, th reta level. Iit other words, it Is a. iesipgn

isu ufkuoldg ereet a onwethrwerquimrv aI (-class to be an il-ebraic or- lotical

(class. Wp call a ( -class, ati imui( l.s.If we ImIpose at restrict ioll that Its iris"tarnie

ira 11) ri isiiijectivc.

TIhe abs-tract U -I lae ~t cly fit into thli .i,,ti(iorIlutvd dlaa muode4l. If all1 thle C(i lIssi'



are abstract C-classes, any object- orint ed model is essentially the same as a valueo-oritjted

'Ye caLl the remaining C-classes entity C-classes, whose instance mnappings are not! intenided
to be injective. The entity C-classes are the representation of the *existing objects" in the real
worldl. In a practical dlesign of knowledgebase, the physical objects and evenits atre oXpie1(lQ
as ejit it v C-classes. This design issue will be discuiss-ed in thle kiter Sect ioni. For examp te.
.irSOIC :'arlIInIal'-uln pallv', inmeeti ng' and 'order' are entity C-cla--,:. Note that thle *exi-'t ill
objects" should not necessarily be physical objects nor events. It ci ihle sonme abst Fact oh '~
which is still aii exp1)ression oft tie existence of "somiethIiing" in tilereal world. BasicallY. anvthlng
that caii ben iiu will be an entity C-class. Hence. even 'friends ip'. *lov-e' c-an he lit itY v
ciass;es Actunally. I lieanlihor presumes that the nominalization in ike mental piroce> ofhIi itii
bei ng is essentially thle samte as creating an ent ity C- class. The idi ii tit v of ani entitY (i-ckll us 1is
characterized by its obJect-i~dentity.

'Ac emiiphasize again that the notion of abstract C-class and eut iv ('-class 1is not de4t eriiiited
byv its miodel. The inistanlce mapping of a etitity C-class mnay be iilclewt oepr cia

object -01-i!!ted miodel. It is a nmeta level requniremenit. i.e. dlesigni I'vel requtireiient.

It P; cow!roversial, whether we should express a logical relation ats it C-class . Alt ernuativclk
we can i! rid ice thle not ion of logical relation as another coiist ri ct of ou r thIeory. There are
two reasons whY we express logical relations as C-classes.

* It iiiav be tie case that an occurrence of logical relation will be converted to tin exis;tinig
ohect hi a certain meta operation, which will lbe discussed Mi the rest of t his section. So.

iis niore convenient to express logical relations ats C-classes. blecause the nmeta operation
can be expressed as just a mapping from a C-class to another (I-class.

* It is betti'r to have only C-classes as the basic construct of the model so that we caii
I reat, thle knowledlge representation in a simple and hiomiogveeos way.

it the rest. of this section, we will provide the intensive consideration to the mewaning of
entity C-classes and logical C-classes. Especially, we will discuss the neta. operation that
coliverts a logical ('-class to an entity C-class.

A logical C'-class is a compound C-class that we make up t~o ('xhpes-s a logical relation of
the real wor-ld 01) ects.

Let us consider a. concept Person with attributes. namne. lot-Mq. F-urthier, let i be the
Instance mapp~ing of Person and D)( ) be the dlomain of t. Flue attribute value ioci iu(,,')
(desigrnates thp p~eop~le that w loves.

Person = (person, f{namnelov~ing), I'csn TR UE)

VPerson(nrauie) String. I'Perio n(JOcin!J) =SCdi.fP- .101t

For oxampIle,

_; -: ' _ ( 1 7), Mi ~(( ) 'J oh 7" , 71(1777 P "A ac! r -" In(,,;-' !o c 171 .

nucans that tic penOi o; [)aiuined -John" loves the person .~'niiicd -\lary.-
A C-class '2 will be a logical ('-class With tWa att i i)itCs 'love> - iid - lVovd' pint iii c- pe r-ons

w here



RV(x) =- In(lo, vd(a: ), loriog(locj.(.)) ).

and the structural sentence TQ is the one that is similar to T for a C-class ",. with non-
elipty attributes. It is important that the existence of the 'affection' is derived from the
attributes(state) of the persons. In this case, it is derived from the attributes of the loving
person. The restriction form RV is not only restriction but also the, definition of tle C-class

.Naiiely, the existence of instance is exactly specified by R'7. Generally, the occuirrence of a
lo'4ical (C-class . is specified by the the restriction predicate fl,. Thus the idenitv f a logical
C-class should be determined completely by its attribute values. The occurrences of a logical
C-class should be the same if and only if their attribute values are the same. Thus one might
say that a logical (i-class can be dealt with by the value-oriented pa:adigm. Howevr it is not
so simple.

We should notice that even a logical ('-class is an approxiiiation of the real world. In
the above example, we specified the C-class affection with tie predicate RV. If the predicate
completely specifies an "'affection". the attribute values will determiie the equ i valnce of in -
stances. However, it does not. '.John* loved 'larv' .vesterday, i.e. the predicate lU-) held for
'.John' yesterday. but it doesn't hold today. Even in such case, we can still think "yesterday's
love of John for Mary." The instance of concept acquired an object identity. Th(, reason is
that the specification by the predicate RV had lacked tenporal inform ation. If it lh d included
tie temporal attribute, we could have expressed the "y'.esterday's love" only by at tribute val-
ues. Therefore. due to the incompleteness of our representation. evel a logical (i-class may
end up as an entity C-class. Hence we introduce a nieta operation A, that converts a logical
C-class to an entity C-class. We call .V a nonalication operator. The nominalization oper-
ator corresponds to the mental process of putting a name to a chunk of information that we
acquired.

As discussed above, every C-class may be inherently an entity C-class. However, iII order
to organize the knowledge representation. we should impose a condition that certain ('-classes
are to be abstract C-classes, as discussed in the next section.

5.2 The Concent Model
II this section. we introduce concept inodel for database desiEun. and discuss its seialtics.

5.2.1 Design Process

First, we discuss the design of knowledge representation. As we mentioned in tlie previouis
s ction, even an instance of logical relation would be an instance with object-idei lity. low-
ever, when we develop a knowledge representation, we have to assume some of the ('-classe.,
should be abstract C-classes. For example, when we register a new intance of ('- lass in the
kiOwlPdgebase, we have to know whether the instance is already stored or not. .\s we dis-
cussed, we can only bli(rc that we can distinguish the instaices I)v our repilfeii tl ti oi . Thi-
is a niatter of correctness of knowledge representation. flence. when we design a kIIowledote
rre.peseni tation usinug (C-classes, it is tle mu uin issle what ( classes \%v should ret'11id as tihe
hasic abstract C-classes.

'he design process will consists of Ht, fllmino stops.

1. Provide algebrair ( '-tinss,,. such a., IIt ur.K Srn.. , K. .((.q11 t( urther xe pvhl,,

prinuitive functions and It'uicati'. her eaiple. { - . . .... for I n ,lt' ,. r ,, , .
t lr r.setton, In} for ,S t.
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2. C'hoose real world concepits that pr~ovide thle basis of our knowledge represen tatluit and

express themn by C-classes. W~e it roduce as many attributes as possible to tlio~e G-
classes. so that we can assumne that their instances are fully specified bY attribute values.
i e_. tile instance flapplin. is injective. We call such C-classes base C-CLasses. For exa iple.
at -oncept pci-Sun would he expressed bY a base C-class JReal-Person. We assigni aks many.

atibutes as possihi'' so that \ve (-,it ihstiiiguisli indlividual persons. Ti'uops

such as in ailoiy( . 1d , can be ox prv,-ed 1), ('-classes dlerived from Iial-(I '(i bY)

abstraction operator, because we doti't ileed all thle at tributes of RcalPI(. 07 i-oilt0 X pi-ess

an employeeor a stuidenit.)

WVe shuuld note that basi c ( '- classecs are in lierently eniti tv C-classes, althbough weo 'zard

hem as abstraict C(-casses. InI ft, when %,-, view the knowledge represenlt at loll tli ohi

a perspective d ifferenit fr-om thli original designi or when we add a new ( -clas.,s MI t lie

schemna, a base C'-class iia v hecomte anl entity ('-class. In such a case, we have to nodl-
ifY thle schem a by ad (liig new at tribuit es to the b~ase (?-class, in order to koe 1, p l)ou r

requiremet thIiat thle C-class should be a ii abst ract C-class -

Thie gui1dehures of selectling base C'-classes aire as, follows.

" Physical objects should be base C-classes. For instance. person. car. location. etc-.So-
cial org-anizatiolis. suich as coiipan 'v, may be considered as physical object:;. b~cauise

tie%, consists of physical objects, suich as, employee, office. factory'. etc.

" Ecents should be base C-classes. For Instance, mneeting, accident. ordler formi of
parts. etc.

~3. Analyze the relation of base ('cla-sses and check that every necessary logical relatioii

among base C-classes can be expressed by the attributes of base C'-classes. We add
new attribut-s. f necessary. The point is that all information should be includcd in thc

attributes of base C-classes. If so, we can express any information by the C'-classes (leirived
by the fundamental operators from base C-classes. Hence. the integrity constrints of

knowledgebase will be completely described by the restriction predicates of base C-clalsses.

Thus inI order to maintain the consistency, we only have to maintain that of base ('-classes.

For example. when we consider at C-class Person and a. C-class (Car, there llay be at logicafl

relation 0 inri-C'ar. W~e express them with attributes ow'n,, of Person anm on' iirr of

('ar. 'The attribute owns designates the belongings of a person, and the at tribuite mi;tI

designates the owner of a car. Then we will express the 0 mr'urC'ar relation by a 1,-Ical

('-class with attributes {owner. car}. and thle restriction predicate uer::

t'ownercar(owr'fe) =p('.stint, Cow~raf1r =object,

I? u Lnercar ( X) In_= li'.o's(oeie(i'))

where TO is the same as in section 3.1.3. The rest riction predicate ninca us that ieo cill

rar,( .r) is one of thle belonigiiigs of thle per".Ol on-n in1'( in) -

It is, ati important. requiretrent that we cart construct every logical rel;.' oln byatriuie

a ml primrnitivye fmi ct otis a idc predicat('s of alpebraic ( a~~ A amid base ' clst If
,~o. wve cani conistruct. any, logical relation iiiroudh fuimda rit al operators fromn .4 iid I,.

Henice It will allow uis to provide tile seriimmt (5 of those ho'mc;1I ( -clas,('s, isiiic, linduced

istialice mnappings Wec will (discuss it ill lie n14- t -(,ct momi,
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4. We define appropriate "view" C-classes using fundamental operators. Logcal C-classes
will be defined by the (generalized) aggregation operator, while entity C-classes will be
defined by abstractions and restriction operators.

5.2.2 The Concept Model and Its Semantics

A concept niodt/ Al of a knowledgebase is a tuple consisting of C-classes of three kinds together
with a ('-class hierarchy -<.

M = ((A,B, D),_).

4 is the set of alqbbraic (-classc. such as Integer, String. etc. L is the het of ba.c C-clas.,ss.
D is the set of all dcricabl C-classes, which can be derived by a finite application of the
fundamental operators from A U 8. We should note that the union of A. 8, and P fornis t lie
universal closure of the union of A and B.

The senantics of the model is as follows. Let F be a finite subset of lie union of A. 5, D.
such that for each C class in I', the C-classes that are the attribute values of -1, is also in F:

(i' , ( b- , v ~, T., _.,, R,),

Vf E (P v,(f) E F.

lVe call such a set of ('-classes closed ,cl of C-classes.
The semantics of the concept model is provided by an object-oriented model (D, Q. I) of

the C-classes F with the following conditions for I. Let 6, be a data algebra in D that is the
model of 1f in F.

" The instance mapping of a C-class -y in A is ixjective and surjective partial function from
Q to 6.

* The instance mapping of a C-class - in P is obtained by induced instance mapping of the
fundamental operators that define the C-class. For a recursive aggregation, we require
that the base ('-classes are always treated as stable C-classes. 'We will consider this
induced mapping in detail in the next section.

" The instance mappings of base C-classes express the instances that are existing in the real
world. Fli, instance mapping of a C-class I in B would be intended to be injective by the
knowledgebase designer. However, we don't impose the restriction as part of the fornial
semantics. If the instance mapping happens to become not being injective, the schema of
the knowledgebase should be altered. It is a matter of maintenance of schema. Note that
a base C-class may be defined with fundamental operator from other base C-classes and
algebraic C-classes. However, the instance mapping is not derived by induced instance
mapping. The instances will be created by update operations of the user.

As we discuss in Appendix A, one of the characteristics of this model is homogeneous
representation of query. There is no distinction between those three kinds of C-classes for
users, so long as query is concerned. A user doesn't have to consider which C-class correstponds
to the data stored in the k nowledgebase. Each C-class would be autoniaticallyv bound to a set
of instances bv the system . The homogeneit v of C-classes will brill- a cle ar semantirs of view
update, which will be discussed in Section ,,\.2..
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5.2.3 Two Kinds of Predicates

If lhe derived C-classes are recursivelv defined, their instance inappings will not be always
determined nor exist. In this section, we consider this matter further.

First we extend the graph we discussed in the definition of generalized aggregation. We al-
low he I Tls of edges to be operator expressions that express lie other fundaimental operators.

(,i , xani pie,

Person = (person, {name, height. father}. 'perso, Tperson. 0. TRUE),

'Perscn (name) = string. 'pe,., ( /icigh ) = I nteger.

vperson( fat/hr) = per.on.

TallPerson = ( tallper.on . Pcrson. R'r Person ).

RTatiP~rs,a(-) (h 91 (.)> (f ).

The i1rapli will be:

V { person. tallperson. .trlng i ltegcgr},

E { (person, string., namc). (I) r.son. integer, hcight).

(person, person, father).
(tallperson, person, O( tallperson, ., RTaIPerson )}

We can lefine a function < from schema instances to themselves in a similar way as in section
4.3. The difference lies in deriving the new instance mapping of the C-classes I'd that are
derived by fundamental operators other than aggregation.

Vv E It' ,W), = 1,,,

Vt E V - W - Vd, Vu.gs.t.(v. u.g) E E, -g(S(1Cw(I),)) ; ? ),

Vr E i - TV . (v, u, expr) E E c(I), = (the induced instance mapping by exp,').

{, v (l),. (if r E V - Vs),
( ) o(l). (otherwise).

As shown later in this section, this c wil] produce a non-sense instance mappings for a
cent ain class of restriction operators.

Next. we introduce a meta function synibol getinstauces in the language that designates
all the instances of a C-class. For a ('-class j and its name n,,, getinstances(n-,) designates the
set of object-identities in ) The set getinstancrs(n,) can be regarded as an instance of
.Sct( n,,t, -t ). For example, we consider a base (-class Man and a derived C-class JRiche.ti,iun.

1an = ( man, {nom,. 1'-alth... }. '.,, . , 0, TRUE),

I/ic/(ictmnt7z = ( rh( 7"ic t a nt ( I a7, {11" w 100},/} Rtch.stman, ? ,tchestman. 0. RRichrst,n ,z)

?'.ayl( nm f ) = c?,t,,,,, ( name ) == .tring.
1r.1,,,n( wralth ) = ('~ h s ..... a' lth) 7--- t7A, t 7.~,

I8R,,i, ... (,Vy 71(., yg ,4 an , ( 01 ,m .1? 0 = '> Ir lh(.1 ) > wralth(y) )
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The getinstances cause the interpretation of predicates to be dependent on the instance
mappings. Hence, it may not be a consistent instance mapping to some C-class definition. For
example, we can express an inconsistently defined C-class:

IlVrong N umber = O( wrongn umber, [I(nOOl, (Integer). (value)), RWiron,;jV;u;,Pr),

1'WrongNum6,r( caltt6 ) = integer,

Rwrong ,,mbcr( c) - (Vy In(y, gctinstaoces(wrougnumber)) .' x # y).

We should note that this kind of inconsistency comes from semantics of instances. It is different
from a relevant inconsistent restriction predicate, such as:

R(x) = (P(X) A -P(x)).

The operator " defined above gives us the wrong answer in this case. Let us assume / i>
the intial scheia instance.

linteger:Q- Z(onto, one to one),

0( lzntger=- -{ IJ2,. .

[,crongnumber =

wh,'re -L is the null nappil:
2- Z (02)=0).

'Then, by definition, we have:

( I ),ntger = integer, {(I)wrongnumber = Integer,

( I ),teger = [integer, ( I)wrongnumb, Imtege,-,

'(((l)),,,,,ger = Int,,g,, ,MI())wrongnumber = _,

(.:(1)),, i = lnt,,,gr, ( ,(I))wrongnumber 1.

In g,'neral.

S [teger (if n is even)
(,,~,:,,,g,,,mbe . (if n is odd),

wlere 1, designates 'f(I). Thus, we cannot have the inductive limit of {I, 1. The problem
ones from the fact that R,,wronnumber depends on its own instance mapping. More specificall.

the variable y is universally quantified on the domain of the instance mapping. So. '( I,n
"'oscillates between Ineger and .L- The induced mapping of W'rongNtinber doesn't provide
ai object-oriented model.

.\ccording to this observation, we introduce a class of predicates.
[.its t. we in11rod ice the following syntax sugar to simplify the notation.

del

(, n. : -, ) .,tccl dc f 3.r( In,( .x get in .ta nc,-( n., ) ) A o )

tie 1w (,( ;l pno -, d]bll ted )y:

I? , ,.\ ,,, ,,..r - (Vyq: w'rongn,,,ob, r- x i .y).



-e i-al the expressions x : n, a explicitly typed variables, and V(3)x : n- a Explicitly ((/l)((I
qua tificr. For any first order formula, we can move each explicitly typed quantifier to left
side of the expression, in the same manner as ordinary quantifiers. For example.

Vx: n(T(x) =; 3y: m P(x, y))

1) 1 1(1) 11) es

Vx:n 3 y:n7 -T(x) V P(x.y).

We call the first order form a normally quantified form, if each explicitly typed quantifier is

placed at the left side of the expression.
If a first order form has a normally quantified form with only existen tial explicitly typed

quantifiers, we say that it is of type 2. A general first order form is called type 1.

Theorem 4 If icry restriction predicate is of type 2, then for each schenia in.stance I. the

opcrator I defined in this section has o fix point 1, suh that I is a subiustance of I-,.

We can prove that lie restriction operator is monotone increasing with respect to the order
among instances. So. we can prove ( is monotone increasing. Hence. there exists an inductive

limit by the fact mentioned at the end of Section 4.2.

In this section. w, have introduce a formal semantics for the concept model. The semantics

is expressed by a fixed point of (-operator. The fixed point of -operator doesn't exist in some
case. We can consider such a concept model as inconsistent. Theorem - shows that some class

of concept model is consistent in the sense that there exists a fixed point of C'4 .

6 Expressibility of Concept Model

In this chapter, we consider the expressibility of our model by simulating other models.

6.1 Relational Model Semantics

The relational model can be simulated by a concept model. Since we will show that datalog
semantics can bo simulated by a concept model in the next section, we can (erive this result
as an easy corollary. However, we can prove it directly. In this section we provide only the

sketch of the proof.
We express relations as compound C-classes. For example, a relation Person( name, aiddress)

will be expressed by a C-class:

Person = (person, { name, address}, 7 person, Tor. . TRUE),

,person(narne) = ,vperson (addre.ss) = String.

1'he reiational opermiIors are simulated by induced operators of the fundamental operators.

.S(ctioi - restrictionl

pro](ction - composition of categorization and abstraction

produt - aggregation

"'Ilwro is ;I IIIal cas, thait the fixod point always exists. If theie are I reIllrri, ;aggrogation i i' lved in tI,,
ltfillitioll of, ike drivd ('-classes. then the concept model is cowist,Ien . 1 ., the ,,'-,,I rator his a li ,d poirt II
fact. for an initial 'Icwmia iistance 1, ( ) is thi' fixed pollit
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Furthermore we have a natural interpretation for the natural join operator. It is expressed by
the specialization operator. Let R and S be relations and R and -ts be the corresponding
C-classes. Then

R N S A. 9R A 2'-

6.2 Datalog Semantics

In this section, we show that the semantics of datalog can be simulated by the concept model.
First we discuss how to convert datalog rules to C-class definitions. We assume that algebraic

C-classes such as Znteqer. String are provided from beginning. We introduce some termino-
ogy. A simple rule is a rule with the body consisting of one literal. If a rule is not simple, we
call it a complex rule. We call predicates such as =, <. restrictive predicates and literals such

as X < I restrictive literals. We also assume that all rules are rectified s . Moreover, we assume:

* There is no predicate symbol t hat is used with different arity. For example, we don't
have the rules such as:

p(X, Y) :- X = Y.
p(X) :- X > 0.

We convert rules into the forms that will be easily transformed to C-class definitions in the

following way.

1. If the predicate symbols of facts appear as the heads of rules, we add new rules so that
they never appear in rules. For example, the rules:

p(a).
p(X) :- q(X).

will become

p1(a).
p(X) :- p1(X).
p(X) :- q(X).

2. If there is a variable that is shared by more than one negated literal, and doesn't appear

in positive literals, we rename the variable so that it, is not shared by negated literals.
For example,

p(X) :- --q(X.Y) & -s(X.Y) , t(X).
will become

p(X) : - -q(X.Y) k: -s(X.Z) kY t(X).

:. We convert lie rules by addi n- euiality literals so that the non-restrictive literals (1o not
share any variable.

p(X) :- q(X,Y) & Y = 1.
will beconme

'[Ul ,Ns] (Chapter 3



p(X) q(Z,Y) & Z = X & Y 1

-1. If at negated non-restrictive literal >liares variables with rest rictive literals. we soeiate
them by introducing -intermiedilate" equalities, For example.

p( X ) - -q( YZ) kY Y :-X kY Z 1

will bCcomei(

p ( X) :- - q (Y'. Z') k Y' =Y vY Z' Z k: Y =X k Z 1

W\' call I lie ex pressions like Y' =:Y, Z' =Z fint Ilie atbove exatm pie t lie it rmf (Iif //It( rot.
ali(l di1stiniiush themn from rest ri(' e Literals by using the equnalityv synio 1)0 nt ead of

So tile second rule InI t Ic abovo example is expressed by:

p(X) -'q(Y' Z') k- Y' +Y kY Z' Z k, Y =X r Z 1

For tilie rules a fter the above con versioii we assig-n ( -classes) I, follows

1.For each nion-restrictive litoral >vtiibol. we assign at C-cla:ss (traking tie piedicate -Yvmbol
ats Its nlamle).

2. For eachI argunment of a non -rest rictivye literal. we assign niumb leredl literal nmali ies as thle

att ibut( i tims "or examiiple. at lit eral p( X.Y. Z ) Iias attributes. p1 .p .7)3. p1, correspondls

to X, p2 to Y and( 7)3 to Z. Let us denote the corresp~ondence by o. II t lie abhove examniple,

oi(X) =)1 p a (Y) =p 2 , a(Z) =p3.

:3. For each variable, we assign a, (I-class name as follows. We express thle assigniml1ent by a

mappin, m"7

" If a variable appears in a restrictive literaj. we a~ssign the name of an algobraic (-class
acc-ordling to thle literal. For example, if we have X =I. we glet

7-NX) = I !/ r r 16.

" OthImrwis.,e. w~e assign the most generic (7-clas"s name lop:

(X) = op.

W'e should remember that we as-sumled tilie ex\istenIce of I~ he ost gener ic ('-claS top

7 Tin the C-class hierarch.

-4. For each attribute, we assign a C-class name in tlie Ilie following way , . WVe determinie tilie

values of attribute value function vy for each literal s Yinbol p. In tlie above exam ple.

11p(Jpl I 7X). ,,(p2) = (Y), Cp(PI3) r (Z).

.We conivert bodities of rules t1) first i-del01 flrnIS With exlici(-tly' tV)' qm1,1iaiters. \%"I

Je~uilw '' wv o coiversoiiwt examples. We express, tile ( llV!rM10ii %V11I it Iliappiligo

i1 pir' ihli,3i ~~f c;-)biaiie.~~iiiIiup hii fti~'(li~

the .ariahk-. X Vor #'xamiijl. if X = I'tii(I X = I "(d) , fol/Ito X



" re-itrictive literal
WVe convert the variables as shown in the followling example.{a( X)(self) =I ( If X is iII the head of the I tle)

O =1) a~(X)(a-.) 1 (if X is inI a lioni-rest rict ivo litoral p(..I
1.= (ot lierwise)

wherei .(f will be thle free varialble inI th liestrnet ion hir(edhi~it e of thle rostrictoIMl
Operator. The variable xP designates the instanice of C-class 1).

" Intermediate literal
Let X' =0 X be an intermiediate literal, where X' is, in1 negatedl iioni-restrictive lite1ral ;

an1d X Is iii a rest rictive literal. The vari'able X will be convtedi e>m wy
ais inI the restrictive literal. We denote it by o( X). The variabhle X' is con verted to
(I (X' )( X,) where p is the literal sYmbol thtat conttainis X. So X' X will he converted
to (i(X')(.r () ( )

* lion1- negated nion -rest ric tive literal
We assumie that non-restrictive literals a ro placed on thle left sW e of restrictive litera Is

Int thle bo0dies of rules.

" ietgatedl non- restrict ive literal

After thie above conversion, we add explicitly typed quiantifiers for the varia bles t hat
appear only in the restrictive literals.

" If thle variable X appears only in a negated literal. wve add Vx: -,,X).

* Otherwise, we add 3x: 7(X).

We arrange the existential quantifiers left side of the iversal (lualitifhers, .Next we collect

lie intermediate literals for each negated noni-restrictive literal amd take the (lisjunict ion
of tiegat ioni of the literals. For example.

p(X. Y) - q(W, V) S, s(A. B) k' X =W Q V =B &- A =Y - B =C.

will become

1)(X,.Y) - q(W', V') & s(A. B) k, W' =W V =1  V .Y- X =W &- V BY A z-Y &. B =C.

Theni its body will be tranisformied to:

BC:fOp 3L:I!OP 3vto1 ) Bx 5 :s Vx,:q ((-((II(.iq,) t n) V -(q2(i,) i) A
(pl(.flf) it A .r, iA '1(x,) = 2(./f) A 21 (x,-

liniall v. we con vert ru les to C- class (lefimi t io1 i

1\lee r itev we shouild say tion1-restrirtive and iioi-itiint,it litera I v-rw us, tII, term rei
ro. trrti%, literal" in t hits sense



p)(i( 17

" For rudes with head literal 1(A X1 ....... Y) with bodies B, (I < I < rnz)

1)(-VI, V> .... Q B2

-X']. -- 2 . .. ,..X y ) - Bin

the '- class k~i defiired as:

" For faicts, we a.si each predlicai e sYmbol of facts a (-class. For oxarnple. Fo h,
following facts.

f(-l.abc-).

we have
li f. (f1. f2).(top, sring)).

We regard that all the ('-classes are abstract C-classes. We construct at concept niub'l
withI:

" Algebraic C-classes, such as Integer. String, are given.

" Base C-classes are those obtained from facts.

" The rest of the C-classes are regarded as derived C-classes.

If we provide the instance mappings for all the base C-classes according to ground facts;.
can get the dlatalog semantics as the least fixed point of C-operator. If there is no n ko
su;1bgoal, ( is monotone increa~sing, because the restriction predicates are type 2. Thus I" lii

lie inductive limit as its fixed point. If we have stratificatioi., we can get thle least fixed pmll
of <1 by the algorithm described in Chapter 3 of [UL -88].

6.3 IQL Semantics

We show that our model can express the semantics of Abiteboul andl Kanellia-Js' TQI.- mO WI.

In the following discussion, the inianing of notations is the same as theirs, min1- 1i
*explicitly mentioned. We have the sets of relation names R, class namnes P. attributes A, -ii

constants D, and object identities 0. A- given schema, (R. P, T) is converted by Homt rodu
nieOv class names P so that each type expressions appearing concerning T is depth 1. I'm ,.i( h
class name p in P U P',

T(p) I ' ....[..~p . lpJj fp) (pi V p) 1 (1),A p2 ).

wherv p', [ 12. .P are in P U P'.
F-or oxaniple. if we have, typO ;t-1 Sii21,tIiit,

TI(prr., on = [uu:fnt~r~q1 f~rnq.~ Hl((r



we convert it as:

T( t, rson ) = nan .:,e I.;o, _ha fl. age:intege r,

T(p ersolnlame ) (first:string, last:.strinzg].

Another example is that:

T t -of _1,1t 101a/) = {d ,:i n tcgcr. ,iu rn:integ-r }

will be converted to:

T(set -of rational) = {rational},

T rational) = [dc w:intcger, n ttyn:inz tger].

Next we change the syntax of literals in Abiteboul-Kanerakis' paper. We con VQ[t 'aclt
literal expression ti(t,) to In( te.t), where tj is of type {t 2}. Furthermore, for a Yp,, as>ioi-

ment T for variables in rules we introduce new C-class names so that the value of 7 i- .
a class name. For examiple. if we have a rule:

p([A:X. A2:y]) - q(X). r(Y).

and type assignment for variables:

r(X) = [de:intcger. nurn:integer], ,(Y) = integqer.

we convert the type assignment by introducing a class name rational I and a new typv assi,.-

ment:
7(X) = rational. r(Y) = integer,

T(rational) = [dcn:integer, nun:integer].

Furthermore, for each type expression that appears in a rule, we assign a new Lt-, iMne.
which will be also included in P'. We introduce a new class pl

T(pl) = [Ai:r(X).A 2:r(Y)].

Finally, we convert the rule using new type assignment and class nanes. tooether wil It Ileiv Iv
introduced variables. For example, the above rule will be:

p(Z) - q(X),r(Y),AI(Z) = X.A2 (Z) = Y,

r(Z) = pl,T(pl) = [AI:r(X). A2 :r(Y)].

We extended the syntax by interpreting A1 and A2 as a function symbol.
After this conversion, we have:

* class nanes P U P'.

0 lhe extended type assignment T' for classes and r' for variables. (Note that we ca1 u sslirlie
that each rule has the disjoint set of variables).

* new riles with only variables as the argument of relation s iebos R U { In).

Now, we create t ie ('-classes according to an ',xtonded >chteina and il,,lifid I lII'- in he
following way. First. we convert the schenia into ('-cl,,
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1. T(p) = 1/

We replace each class name p by p' in the schena expression and rules

2. T(p) = {p'}

We use set construction.
SCt(p, %,).

3- Tf1) = P1 V P2

1. T(p) = p, A p2

5. [A:pj,....A,:p, ]

We use recursive aggregation to define , S.

,d,,,m = fl(diommy. G, 4), G ( E).

V = {p E P U P' p appears in the aggregation expression.}.

E {(p,p', Ak) I T(p) = [A I:pl ..... Ak:p',...]. }

', is any set of symbols that has one to one correspondence with V.

Next we convert the rules into C-class by the same way as we convert datalog rules. The

OnlY difference is that we may have a functional expression, such as Aj(X), as argument of

equality. We can convert such an expression naturably to a first order formula. In the above
example, the rule:

p(Z) - q(X),r(Y),Ai(Z) = X, A2 (Z)= Y,

would I)e converted into

= 0(p,pl,(3xq:q3y,: A1 (self) = ql(x,,) A A2 (self) = 7l(y)) ).

For riven IQL program r(S, S,, So, ), we convert the schema S and the rules in the above

way and get C-classes. Then we define a concept model with

* The C-class 7D for the constants D is the only algebraic C-class.

* The C-classes that correspond to the initial ground fact are base ('-classe., as in the tase

of datalog program.

* The remaining C-classes are derived C-classes.

Ihen the progranis Inflational fixed point will be provided by a fixed point of the (-operator.
Note that providing the instance of a schema in the IQL model is the sanie as providing a set

of !"round facts.

I I-•
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6.4 IRIS Semantics

In this section, we briefly show that most of the semantics of IRIS system [FS 89] call be
expressed by a concept model. We provide only a sketch of simulating the IRIS semantics by
the concept model.

1.'p to now. we assumed that the algebras that a ppear in the valtne-oriented model (.'-cla>ses
are partial-valued algebras. In ordered to capture tlife semantics of IRIS system, we a"i111ue
that they are tmulti-valued algebras. \Ve ie(d no change in our theory. because we can replace
the partial functions in our discussion by multi-valued functions, because the multi-valued
functions and sets form a category as we suggested in Section 2.1.

\We formalize the semantics of IRIS system without foreign functions. First we as>rn
algebraic (i-classes to its literals, such as integers. strings. Second we assign base (-classes to
its objects. Finally, we describe the functions by first order sentences and add them to the
auxiliary sentences of C-classes. Then the object-oriented model of these C-classes provides the
sema ntics of IRIS system. Actually. the seniantics is expressed exactly bx the object-identity
space of the object-oriented model.

7 Future Work

There are several issues for future work.

" Schema Evolution
As suggested in Chapter 5, object-identity plavs an essential role of schema maintenauce.

It may provide the formal guideline for schema evolution. For example, when a new
concept (schema object) is added to schema, the existing concepts should be altered so
that base concepts will stay being ai ;tract concepts.

" Complex Values
We demonstrated that complex value has ani inherent disadvantage concerning main-

tenance of consistency of a knowledgebase, because it cannot incorporate vith object-
sharing. However, it has a strong advantage in providing structured data that a pro-
grammer can easily handle, as discussed in [LP '9]. Hence we should introduce he
formalism that can provide the structured data without sacrificing object-sharing. The
author presumes that it would be attained by introducing "local concept." Namely. the
language provides the construct for defining concepts that are local to a concept. A
programmer can provide the access method to the local concepts so that the instance of
local concept and its attributes call be shared from outside. We should note that this
will bring no change in the semantics of object-identity. Any object-identity is inherenly
global, because knowledge is global. The object-identity of a local concept is realized in
the "global" object-identity space. as well as that of global concept. The const ruct of IIli
local concepts will be introduced for programming convenience.

" Implementation of Concept Model
Recently. a prototype systemi of 'Concept. Model has iml)lemented the model as a ha nll,,.
'he prototype system is written in 12.000 linies of ('ommon L.isp code. The system ((,( I,
the integrity constraints auntonaticallY. 2lie act ual v,,ssion performed on the protolnv)'
system is shown in Appendix C.
There are several technical issus. uich ;, I\ po ch,,ckitlu c'onsistency nloaintelialic' . d
01) ject- lb ldinig, which will be discuisse il l hi' i,'\l '{\t



8 Conclusion

We have presented a formalism that expresses the clear semantics of object-identity and the
essential distinction of the value-oriented model and the object-oriented model. i order to
express the value-oriented semantics, we have introduced the notion of data algebras. The
semantics of object-oriented model is expressed by the combination of the (bJect-ide t itv
represent ation and Ilie value-orielted representation.

Moreover, the formalisin has incorporated the logical database niodel bi to tlie ohject-

oriented inodel by expressing logical relations as classes.
W\e should emphasize that our model provides the full-advantage of object-sliamig iisinli

object-ideitities, when it is a pplied to a practical system. Yet, it also provides the : uc t iired

algebraic eniantics.
The concept model based on the formalism has been proposed, which provides the formal

guidelines on knowledgebase design. The concept model is an a.tt-mpt to represcnt thc exiting
objects in tne real world as faitihfully as possible. Namely, the instances of base C-classes
are strictl correspodi(ling to the existing objects. Then the abstraction of those objects is
expressed by derived C-classes. The model provides a way of expressing and liiaint;ining the
integrity cmnstraints easily.
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A Database Operation

So ftar,. we Ihave disc ussed t Ihe schema rep resentation of d atabase. In ii I we will
describe thle dlatabase operations, querY and update.

A.1 Query

ThO eii cs; of' querY is ,i Miple for the concept inodel >

Alq ((A.bS.7TP ). 

A\ q uer ,v is- hasic;Ill ,v to get i iistance in apping of a concept - in A U bu P. W\e t al hie MinimnalI

closed lset 1, of concepts that contains -,in the union of A. ti and P. Then we obtain a fixedl
poilit of ( operator for F. As discussed In thle pr-evious chapter. for a Certain concepV , hlere,

fmay iot exi.t tie Fixed poinit.

A.2 Update

J'ul, ildale i, to iflOilif tile object-model of concep~ts. i.e.. to ilodhifv tile litIierlp)n

We H>u ia t the value-oriented model and object-Identitv space are fixed. Furither, we

assuiie thait aiiv, update is obtained by comiposing thle following three operations.

A.2. I Insertion

Basicall '.v thle insertion can be done to base concepts. Or wheni we Insert anl instanice to a

dlerivedl concept. it should be transformed to the Insertion of a base cotncep~t. Thus we cannot

Insert to a derived concept obtained by the constructive aggregation. Onl the other hand. we
c'an insert ainsac to a cocp eie y h etiction operator. If we allow 'miull-valmied"

atm i butes. we can insert an instance to a concept dlerived by the abstraction operator.

Thie proc:eduire for insertion is as follows.

1. (Create aI new object-identity, say j.

2. Pegister thec values of aittributes, say (P. ofw ;. More specificallY, mlodify thle Initerpretation

f~ .)'s of f in (D. If tile value(object-identitY ) dloesn' t exist, we create and insert it

C (heck thle Integrity constrain ts. If thle const railts are [lot sat is led. thlen ii1110 tilie oper-

altion. (Signal error.)

A.2.2 Deletion

HI eoreticallY ve (Ion't allow the deletion of ohject - iden t itY. becaulse ohle( t-identity is sorne-

thin-, tm at expresses the real existing object. For exampil)e. even If a, person (lies, the fact of

lie, ' i t en co of Ilt e wrso ( annrot lbe elini inatedl fron our knowledge. Hlowever. III a practical

stei.we 1111y elitriirate the object-identity if the object-idenityt isro lonver referred to bv

li- I jects of ourli interest. This operation is; peiformued bY ii kiiid (if garbage collectionl.



A.2.3 Modification

kVhen we modify an attribute value of' aii iic~a nc~- ,;, we cli a e thIe interpretation of the
function symbol, say f, that corresponds to lie attribute. More specificaLly, we change the
value of o(f)(w,). The modification should be compatible withI the value-oriented miodel. If
h le object -identit v for t lie new valute of e( f) isnot in thle irwelebaweratane

object-ident-ity with thev sameoceur for ner tlin

A.2.4 View Update

Since we have a ioinooeneous represeritat fil 4f concept-), we c;ii upd((ate the knowkledgeba.oo
through derived concepts,, wihencver It I-, po>,I le. More preci.,elY. if' we can specify a uniqu(pe
object-identity( inlstance I to be deleted or 1110(1lied, then wve ci n delete the inlst ance or iiioilify
the attribute value of the instance. WVheni wo insert an object th rough view concept. if we c-al
verify the object doesn't exist as an ist anrce of base coticept. we ca;n convert thre i isert ioni
operation to tire insert ion of' thle o bject - den t v to a b~ase con cepit.

To summarize, if t lie update can 1)0 mnappedl to a unrique uipd ate at ba.se corncep t level.
then It can be performed. There is a T ypica I case when ii pdat e thIirough derived concept cani
he (lone safely. If a de ric d cotc(p1 is d( r (I from A (ind L, only thirough u bstractzons oa d
rest rzctions, then I/hc deletion and(( modificatiou canf be fipp)~d /o (1 ii nique uipdate of f/ic batc
concept, because the inidurced inrstanrce inappi hg of the concept dlerivedl by abstract ion and
restriction has a smaller dlomiain than t hat of list ance inappinii of thle base concept.

B Methods, Overloading, Encapsulation
The methods and encapsulation can be fornihzed stnmplyv by using functions with subtype
matching. We should note that we don't (listintguish the typc and olass in our model. A C-
chuss plays the role of type. In other words, each type will be assignedl to only one class. Since
we have C-class hierarchy, there is no semantic reduction even wvithout the distiniction of class
and type. In this chapter, we use the termn // inisteadl of C-c/ass, when we use a C-class as
ty pe.

BA1 Method by Function

All methods are defined as; a fitnrction wvithi ,trowlg I ~pe checking. A miethod of a (--class i
dlefined by a binary function. One, i-rnreiit t pje (or I lie fuinci on Is -f . the other is the type for
the message. Note that we allow a multiple f'iction (definrition [in the following sense. For each
function name, we can have the nriltiple definit Ion. so bung a~s thle triple of the argumnent t *v pes
of the function is different. The triples of thle a rgtrment tYpes are ordered by the product order
derivedh from the C-class hierarch.y. Hence, thle compiler wvill tr rv to pick rip the most specific
frinction definition according to the arr i in t types. For examipl~e, if we have the ox l reSsiori

Iwe pick rip the funct on (definit~in of f with t Ill- 111inirtu1il type t uple that lnatche- r lie tyvpes

of (xi . .) We require the ininiirrat type tuiple toi 1)e uique. InI a practical system. if t01erC

exists more t han one iii inal tyvpe t r1pe. t hen1 tie( coiiihpiber 11il sile an error.

I \\'e rise a lisp-like notation of fri cr ion



B.-2 Overloading

The overloading of methods is lat urallv itttailiedl hecause h li ost specific funct ion de01i it ion
is taken for a particular pair of type and m nessage.

B.3 Encapsulation by Subtype Matching
Plie viicapsu Ilatioii Is realized byv tile C-clss lierarchty. Let uis a, sunvie that ('ca>- ie
clIa ss o f ',2.

~ 2~ Yi a, , , co. T, _Aj Ij) (/ 1. 2)

T Ile at Ihi)it tes tha t a 1.( pr 1o per for cannt o t be accessed from 1 1 - In ot her w ord 1 lie a 1 i4 1111('ent

to the funct ion 'in P - V) should be an instance of a subclass - of -fl Note thatt we Mciuie a
('-class, itself to its subclass.

By type castizi. we canl easily provide a way to define a method of -,2 that (all accoss filhe
at tri butes prop-r to( 2 For examp~le, let ( b e the tvlpe caisti g function. It' a vati able xc
h as a t 'ype ;mad -11is the subtype of -12. thten (* l x) has t.ype -1. ii we (all delitte a

fu nctioll like ]in t li following, example.

(def unction funt1 (X -12, m im)

(f (* lX)..)
wheie f Is tilie functioni with argumient type Th1-

BA4 Application to Database Security
Tile encapsutlat ion cani be used for database security. In this section. we (lescilbe the rough
sketclh of thle idea. First a uiser is providled with a set of C-classes that he/she caix access.
More specificallY, the t ,ype names that tile user can use for the t 'ype declaration is, rest I icted inl
tite acce,,s lanuiage. So, we could say that each user has the different access lanuagye. Let 11s

denote the set of a ccessiblle tv ies for a user u by A( U). We call it (ICC -ss (101110 U. T he rest rict 1011
of accessible ('-claksse, s i sed as follows, for example. Whenl we \valtt to rest rict a ris-er to access
Olil istaillces of at (-class that satisfy a certain condition, it canl be easilly i-ealizedl by allowingo

het( user to acce>, otill"v to t(lie C-class derived from thle C-class by a restriction opera tor.
u iser who cant access onily' some hligh~er level of types is Ilot ab~le to access filie at trilbutes

proper to tile subtypes of them wvithout a type casting frunctin. Ilelice. we call Ii pose a
p~rotectionl by restricting the utse of the type casting functiroll The protect ion illechaisin i>"

(piute simple. A user is provided with a ,et of types that can le ulsedl as the destinat ion tvlC of
type casting function. Ini the albove exaniple. each user Ilas tile restriction for Ile first arogutuleltt
Of ( .Let 'P( a) be tile set of types tilat a user ti is allowed to ttleIi type cast ilig fiutct ionl
The se(t P( ti ) Is called the access range of a user u. Let t15 call it a sn~1~.11 15rof t//( -2, if'

P(it co t a ins 2'If a user nt needs a miet hod that should access, lie attributes of a t > pe tlu at
are tiot Hti tw li (c05 ra tge nor in the access domain, u should ask a sirpervising, utser (If thie
type for riefirting thle hrniction, Then the dlefinedl fulnction is q/ijr(lto it. Each irser t/,ha tile,
set of qziu i futoi, Fo. (ii) that hie/site call ruse other than fmlictow ohS(f is/her o'.kril (he0in1it01i.

The -iiippewd frtiim1oni 1-,lulerl to F(oa). Thlerefore. tihe protection, is coiipletelY ch(t 11 ict(1'ri/Cv
byt ilie triplet. (A ii). P(11i). T( 11) ) of access dlomain,. access r-ane miud given friniciions. \VP ca;ll

it (wcf 1.11ii71ilyj . Ili rt lieriltore. we could( Hitt rodltce a I veviit orde](r to lat(,e I li' sIt rfint It
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of acces privilege. Let us denote the set of all access privileges Lv P. Let o. 3 be in P.

a = (A,,,7, ,,), = (A ,%;j., 3 ).

I lie accss privilege o is stronger than 3. if

A,, D A 3 and P, D t3 and I,, f.,

Mhyeover, we Can extend the notion of access privilege by assigniig protection with each
of database operations, such as read and write, insert and delete. Let C be the caitegories of
(,perati us. Tle extended access privilege 11 is the collection of iiappin g from (7 1 P.

Carl tllanage thli access of user by I together with the access hierarchy provided bly the
ptrtial order ofd access privileges.

For examiple, it is natural to require that write protection is tilhter than read protection.
Then it is expressed by:

Vf E_ R, f('write') -_ f('rcad').

eca n also introduce the order in FI. For f, g in f..q has stronger access po er than f if

Vc E C. f(c) -< y(c).

"Fhin users ca i be organized by I1 with this order. For exaniple. a iiianager would have
.- l ronger access power than his staff members with this order.

C ADL Sample Session
As we mentioned earlier, the implementation of the fornialim in this report is in iro(ress. It
is realized as a data description language called ADL(Algebraic Data Language). Currently.
tie system is made of 12,000 lines of Common Lisp Code. It has the following features.

1. (LOS-like Functional Language
It has (LOS-like functional language with strong type checking for hierarchical types.
i.e., it allows subtypes. We can attach a restriction predicate to each class to express the
iutegritv constraints.

2. Lazy Evaluation of Object-binding
The binding of instances to each class will be delayed until necessarv. Moreover. tile
uipdate of instances are perfornied according to the local logs of classes. The dependency
of classes, such as "what update of which class will affects which class" is checked at
compile time. Since the object-binding is done according to the local ii pda te logs, the
update cost is smaller and we can perform a necessary optimization according to the
sequences of updates recorded in the logs,

3. Incremiental Class and Function Definition
New schema objects(C-classes) and functions on ('-clas.,es can be added after ilst ances
ar( bound to classes. If the new classes contradict the iustances of basc ('-classes,. all
lie further transactions may be rejected as incoisisteit. Tlie contradictillg instances of

(lerive(l ('-classes will be autounat ically fixed when tihe oh ect -Li idinug for tIh, class,,' 1,
'rfornmed.



The current version of the language is (jite fenrative and will be subjected to many% clianges

in the future.
There are built in classes and functions. For classes, we have 'top', "bool','number',*string',

seqience','bag', 'set', etc. For functions, we have:

plis numb(r x t umbcr - number (add numbers)
minus WIiintbt x naib~c numbcr (subtract a number from a tnniher)

length string -- aumber (string length)

substring? : .tring x ,4ring - bool (1st arg. is a substring of 2nd arg.?
. • • etc.

The following is the actual session performed on this system. The lines preceded by "::- are
the comments, which were added afterwards. The highlights are in the second half of the
session, where the automatic integritY constraints checking, incremental class definition and
object- binding are demonstrated.

ADL[O]> (lisp (reset-kb!))

Clear all instances and initialize transaction management

routine.
rest-kb

ADL[O> (defconcept person (base entity) (isa top)

((name string) (address location) (age number) (phone string)
(occupation string) (salary number))

(res (and (gt (age self) 0) (lt (age self) 200))))

ADL[O]> (defconcept location (base entity) (isa top)
((state string) (city string) (street string) (number string)

(apartment string) (apartment-number string))

(res true))

ADLEO]> (defconcept student (derived entity) (isa person) ()
(res (equal (occupation self) "student")))

ADL[O]> (defconcept professor (derived entity) (isa person) ()
(res (equal (occupation self) "professor")))

;; We have defined four new C-classes: person, location, student,

;; and professor.

ADL[O]> (compile)

;; recompile the classes and functions.

;;First, we demonstrate a nested transaction and object sharing.

ADL[G]> (begin-transaction) [13
begin the transaction.

The system supports nested transactions.
The number in the prompt "ADL[#]>" shows the nesting depth.

ADL[I]> (insert (person (name "John")



(address (location (state "CA")

(city "Palo Alto")

(street "Yale")

(number "2260")))
(age 20)

(salary 40000))

ADL[I]> (set 3ohn (find person (equal (name self) "John")))

Any instance can be bound to a global variable.

Note that we don't have to specify the all of the attribute

values, because an attribute is treated as a partial function.

ADL[I]> (insert (person (name "Mary")
(address (location (state "NY")

(city "New York")

(street "West")
(number "47")))

(age 18)

(salary 50000)))

ADL[I]> (set mary (find person (equal (age self) 18)))

ADL[I]> (end-transaction)

transaction[l] successfully terminated

ADL[O]> (begin-transaction) [2)

ADL[1]> (modify mary age 25)

ADL[1]> (begin-transaction)[3]

ADL[2]> (begin-transaction) [4]

ADL[3]> (modify mary age 21)
We modified Mary's age in the deepest level of the

transactions.

ADL[3]> (end-transaction)
transaction[4] successfully terminated

ADL[2]> (output mary)
;; We show that Mary's age is actually modified.

[person]:

salary -> [number):50000

age -> [number]:21

address ->

[location]:
number -> [string] :"47"

street -> string] :"Wert"

city -> [string];"New York"

state -> [stringJ:"NY"

name -> [string]:"Mary"



ADL[2]> (modify mary address (address john))

Mary's address becomes the same as John's address.
The object is shared.

ADL[2]> (output person)

;; Now, both persons have the same address.

Instances [person]:::

[person]:
salary -> [number]:50000
age -> [number]:21
address ->

[location]:
number -> [stringJ:"2260"
street -> [string] :"Yale"
city -> [string]: "Palo Alto"
state -> [string] :"CA"

name -> [string] :"Mary"

[person]:

salary -> [number] :40000
age -> [number]:20
address ->

[location]:
number -> [string] :"2260"
street -> [string] :"Yale"
city -> [string] :"Palo Alto"
state -> [string] :"CA"

name -> [string] :"John"

ADL[2]> (modify (address mary) city "Stanford")
;;We change the city of Mary's address to "Stanford".
;; Since the location object is shared, this change is
;; automatically propagated to John's address.

ADL[2]> (output person)
;; The change is actually propagated.

Instances [person] :::

[person]:
salary -> [number]:SOOOO
age -> [number]:21
address ->

[location]:
number -> [string] :"2260"
street -> [string] :"Yale"
city -> [string]:"Stanford"
state -> [string] :"CA"

name -> [string]:"Mary"

[person]:
salary -> [number] :40000
age -> [number]:20



address ->

[location]:

number -> [string :"2260"
street -> [string] "Yale"

city -> [string :"Stanford"

state -> [string] :"CA"

name -> [string] :"John"

ADL[2]> (modify john age 300)

This change contradicts the integrity constraints that

a person's age should be greater than 0 and less than 200.

ADL[2]> (end-transaction)

transaction[3 aborted

The transaction in level 2 is rejected.
Since the modification of the addresses of John and Mary

are performed in level 2, it is thrown away.

ADL[1]>
(modify john age 30)

;; Just one more change in level 1.

ADL[1]> (end-transaction)

transaction[21 successfully terminated

;; The only changes performed in level 1 have been accepted.

ADL[O]> (output person)

;; We show what has been changed.

Instances [person)::-

[person]:

salary -> [number):50000
age -> [number):26

address ->

[location]:

number -> [string]:"47"

street -> [string) :"West"

city -> [string]:"New York"

state -> [string] :"NY"

name -> [string] :"Mary"

[person]:

salary -> [number) :40000

age -> [number) :30

address ->

[location]:
number -> [string) :"2260"
street -> [string]:"Yale"
city -> [string):"Palo Alto"

state -> [string):"CA"

name -> [string]:"John"
;; Only Mary and John's ages have been changed.

Next we demonstrate the automatic object-binding

ADL[0> (output student)



Instances [student]:::

;; No instances are bound to 'student'.

ADL[O]> (begin-transaction) [5]

ADL[1]> (modify 3ohn occupation "student")

;; John becomes a 'student'.

ADLE]> (end-transaction)

transaction[5] successfully terminated

ADLEO]> (output student)

;; Now, John is bound to 'student' as an instance.

Instances [student]:::

[student]:
salary -> [number] :40000

occupation -> [string] :"student"

age -> [number] :30

address ->

[location]:
number -> [string]:"2260"

street -> [string] :"Yale"

city -> [string):"Palo Alto"

state -> [string:"CA"

name -> [stringl:"John"

ADL[O]> (begin-transaction)[6]

ADL[I]> (modify 3ohn occupation "professor")
;; John becomes a 'professor'. He is no longer a 'student'.

ADL[]> (end-transaction)
transaction[6] successfully terminated

ADL[O> (output student)

Instances [student]:::

;; He is no longer bound to 'student'.

ADL[O]> (output professor)

;; Now he has been moved from 'student' to 'professor'.

Instances[professor]:::

[professor]:
salary -> [number3 :40000

occupation -> [string] :"professor"

age -> [number] :30

address ->

[location]:
number -> [string]:"2260"



street -> [string] "Yale"
city -> [string] :"Palo Alto"
state -> [string] :"CA"

name -> [string] :"John"

Next demonstration shows the integrity constraints involving several

C-classes.

ADL[O]> (defconcept I-am-the-richest (base entity) (isa top)
((name string) (salary number))

(res (forall ((x person)) (gt (salary self) (salary x)))))

First, we define a new C-class, which claims that
it is richer than any 'person'.

ADL[O]> (compile)

; Incrementally compile the schema.

ADL[0]> (begin-transaction)[71

ADL[I]> (insert (I-am-the-richest (name "tyrant") (salary 10000)))

ADL[l]> (end-transaction)
transaction[7] aborted

Since there is already a 'person' whose 'salary' is
more than 10000, the transaction is rejected.

ADL[O]> (begin-transaction) [8]

ADL[I]> (insert (I-am-the-richest (name "tyrant") (salary 100000)))

ADL[1]> (end-transaction)
transaction[8] successfully terminated

;; No 'person' earns more than 100000. So, this transaction

; is accepted.

ADL[0]> (begin-transaction)[9]

; Now, we try to insert a 'person' whose salary is
More than "tyrant."

ADL[1]> (insert (person (name "richman") (age 45) (salary 110000)))

ADLE]> (end-transaction)
transaction[9] aborted

;; Although, "richman" satisfies the local constraint on
the age, this transaction is rejected, because "tyrant''

doesn't allow a richer 'person' than him.

We can use any first order formula to express the integrity constraints.

The following example demonstrates the use of quantified first order formulas.
Since the schema objects can be incrementally defined, we can express
complicated query by a schema definition.



ADL[O]> (defconcept oldest-person (derived entity) (isa person) nil
(res (forall ((x person)) (ge (age self) (age x)))))

ADL[O]> (defconcept the-oldest-person (derived entity) (isa person) nil

(res (forall ((x person))
(if (not (equal self x)) (gt (age self) (age x)))))

Two classes are added. The class 'the-oldest-person'
should be a person who is really older Lhan any one else.

ADL[0]> (compile)

ADL[O]> (output oldest-person)

Both 'oldest-person' and 'the-oldest-person' has an
instance, because there is only one person with the

oldest age.
Instances [oldest-person]:::

[oldest-person]:
salary -> [number] :40000

occupation -> [string] :"professor"
age -> [numberJ:30

address ->

[locati±iu]:
number -> [string] :"2260"

street -> [string] :"Yale"

city -> [string] :"Palo Alto"

state -> [string]:"CA"
name -> [string :"John"

ADL[0> (output the-oldest-person)

Instances [the-oldest-person]:::

[the-oldest-person]:
salary -> [number) :40000

occupation -> [string) :"professor"
age -> [numberl:30

address ->

[location]:
number -> [string :"2260"

street -> [string) :"Yale"
city -> [string]:"Palo Alto"
state -> [string] :"CA"

name -> [string :"John"

ADL[O]> (begin-transaction)[10

Now, we add one more 'person' whose age is the oldest.

ADL[1]> (insert (person (name "Kate") (age 30) (salary 45000)))

ADL[1]> (end-transaction)
transaction[10] successfully terminated

Now, there are two persons with the oldest age 30.



ADL[0> (output oldest-person)
;; So, 'oldest-person' has two instances.

Instances [oldest-person]:::

[oldest-person]:
salary -> [number] :40000
occupation -> [string] :"professor"

age -> [number:30

address ->

[location]:
number -> [string] :"2260"
street -> [string] :"Yale"
city -> [string] :"Palo Alto"

state -> [string] :"CA"
name -> [string] :"John"

[oldest-person]:

salary -> [number] :45000

age -> [number]:30
name -> [string]:"Kate"

ADL[0]> (output the-oldest-person)

Instances [the-oldest-person] :::

;; But 'the-oldest-person' has no instances, because
;; there is no person who is strictly older than anyone else.

ADL[O]>
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